Appendix J Quality Assurance Project Plan

Appendix J.	Quality	Assurance	Pro	ject	Plan
-------------	---------	------------------	-----	------	------

2 3		
4	Table of Contents	
5		_
6 7		Page <u>No</u>
8		110
9		
10	Section I. Introduction	J-1
11	Costion II Decayon Definition	
12 13	Section II. Program Definition	J-ರ
13	Section III. Project/Task Description	I_ <i>A</i>
15	Oction in Troject rack Description	
16	Section IV. Data Quality Objectives for Measurement Data	J-4
17		
18	Section V. Project Narrative	J-5
19		
20	Section VI. Special Training Requirements/Certification	J-6
21		
22	Section VII. Documentation	J-6
23 24	Section VIII. Sampling Process Design and Sampling Method Requireme	onto 17
25	Section viii. Sampling Frocess Design and Sampling Method Requireme	;iit 5 5-7
26	Section IX. Sample Handling and Custody Requirements	J-7
27		
28	Section X. Analytical Method Requirements	J-8
29		
30	Section XI. Quality Control Requirement	
31	Data Collection and Sampling QC Procedures	
32	2. Sampling Equipment QC Checks and Frequency	
33	3. Sample Collection QC Checks	
34	4. Analytical Procedures for Laboratory Samples	
35	5. QC of Sorbents	J-10
36 37	Section XII. Instrument/Equipment Testing, Inspection, and	
38	Maintenance Requirements	.J-17
39	mantenance requirements	
40	Section XIII. Instrument Calibration And Frequency	J-18
41	1. Sampling Equipment	
42	2. Laboratory Equipment	
43		
44	Section XIV. Inspection/Acceptance Requirements for Supplies and	_
45 .	Consumables	J-20
46		

Appendix J. Quality Assurance Project Plan	
Table of Contents (Continued)	
rabio or contonto (continuou)	
	Page
	<u> Ňo</u>
Section XV. Data Acquisition Requirements	J-20
Section YVI Data Management	L-20
5. Dialik Corrected Data	J-Z I
Section VVII Accessment and Beanance Actions	Laa
2. System Audits	J-22
Section XVIII. Reports to Management	J-23
· ·	
·	
Section XIX, Data Review, Validation and Verification Requirements	J-23
Section XX. Reconciliation with Data Quality Objectives	J-26
1. Precision	J-26
2. Accuracy	J-26
3. Completeness	J-27
·	
Attachment A. Examples of Chain of Custody Forms, Stack Sampling	
•	
,	
Attachment B. QA/QC Objectives for Analytical Methods	
	Section XV. Data Acquisition Requirements Section XVI. Data Management 1. Field Data Reduction 2. Laboratory Analysis Data Reduction 3. Blank Corrected Data Section XVII. Assessment and Response Actions 1. Performance Audits 2. System Audits 2. System Audits Section XVIII. Reports to Management 1. Internal Reports 2. Report to Client Section XIX. Data Review, Validation and Verification Requirements 1. Data Review 2. Data Validation 3. Identification and Treatment of Outliers 4. Calculation of DRE Section XX. Reconciliation with Data Quality Objectives 1. Precision 2. Accuracy 3. Completeness 4. Representativeness and Comparability 5. Detection Limits Attachment A. Examples of Chain of Custody Forms, Stack Sampling Record Sheets, and Sample Labels Attachment B. QA/QC Objectives for Analytical Methods

Section I. Introduction

1. Background.

a. The mission for developing the facilities, testing, and improving new and unique demilitarization processes and equipment required to destroy obsolete chemical munitions is assigned to the Chemical Agent Munitions Disposal System (CAMDS) at the Deseret Chemical Depot (DCD) in Stockton, Utah. CAMDS is responsible for conducting trial burns and is the principal data user and decision maker for the trial burns.

b. CAMDS will subcontract the sampling and analysis for the Metals Part Furnace (MPF) Performance Trial Burn. This support will include the performance of gas sampling, collection of selected process samples, transportation of samples to the laboratory, sample analysis, Quality Assurance/Quality Control (QA/QC) associated with these tasks, and reporting of the results.

 c. The Test Contractor will provide in-process approvals with final acceptance and approval by CAMDS. CAMDS will be responsible for the collection of certain monitoring information and collection and analysis of agent feed samples, and the collection of system operating data.

2. Methodology.

a. The project organization is summarized in Figure 1-1.

(1) The Test Contractor Principal-in-Charge will commit the resources to the project and be responsible for resolving major problems if they occur. The QA Officer will report to the Test Contractor Principal-in-Charge and be responsible for enforcing the Sampling Standing Operating Procedures (SSOP) and protocols of the Quality Assurance Project Plan (QAPP).

(2) The Field QC Coordinator will report to the QA Officer and observe all on-site activities to ensure that the SSOP and the QAPP are being followed. The Field QC Coordinator will coordinate with the Test Contractor Project Manager (PM).

(3) The PM is responsible for all on-site work and completion of the data collection, lab analysis, gas sampling data, emission quantification calculations, and reporting the results. The PM is also responsible for overseeing the required sampling and ensuring that the samples are taken to the laboratory.

(4) The CAMDS Stack Sampling Coordinator and Contract Officer's Representative (COR) will be available to coordinate with the PM including changes in any sampling or analytical procedures.

b. The PM will be responsible for direct supervision of the gas sampling teams, equipment, transportation, set up, calibration, sample train operations, pre- and post-test leak checks, isokinetic checks, train breakdown, and gas sample recovery.

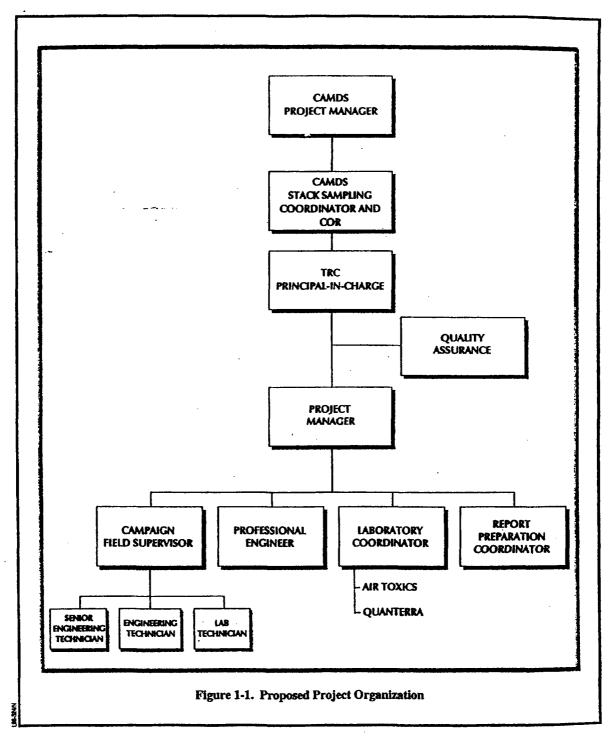


Figure 1-1. Project Organization Chart

1

1. Background.

- c. Each team will include a team leader and technician. The leader will be responsible for operation of the testing equipment, QA/QC, and record keeping for his/her particular train. The team leader reports any irregularities to the PM. The PM will report any sampling problems to the CAMDS COR and the Test Contractor Principal-in-Charge.
- d. The Laboratory Services Coordinator will oversee all analytical activities and ensure that the samples are analyzed according to the methods and procedures specified in the Sampling Standing Operating Procedures.
- e. This project management structure anticipates the direct personal responsibility for each task and provides the mechanism for review and corrective action. The direct supervisory line of responsibility also provides for flexibility and timely action to correct problems.

Section II. Program Definition

- a. The CAMDS facility, located at DCD in Stockton, Utah consists of three incineration systems. These incinerators include: the liquid incinerator (LIC), the metal parts furnace (MPF), and the deactivation furnace system (DFS). The brine dryer system (BDS) supports site operations through the drying or reduction of scrubber brines down to solid form for disposal offsite. CAMDS is designed to dispose of nerve agents (GB and VX), blister agent (mustard, H-series), drained munitions, contaminated refuse, bulk containers, liquid wastes, explosives, propellant components and other agent related generated waste.
- b. Chemical agent munitions, including mines, projectiles, and bulk agent ton containers are stored in bunkers located in the Deseret Chemical Depot. This area is secured by the Army under 24-hour electronic surveillance and armed guard. The CAMDS facility is situated adjacent to this storage facility, minimizing the distance munitions are transported.
- c. The trial burn testing for which this QAPP and the associated Sampling Standing Operating Procedures (SSOP) are written is for the MPF HD Trial Burn. The Plans describe in detail the sampling and analytical activities that will be performed by the sampling contractor and laboratory during the trial burn performance tests.

Section III. Project/Task Description

1. The MPF is designed to meet RCRA regulation performance requirements (40 CFR Part 264).

2. During the MPF Trial Burn, exhaust gas emissions testing will be conducted for oxygen (O2), carbon monoxide (CO), carbon dioxide (CO2), particulate matter (PM), hydrogen fluoride (HF), hydrogen chloride (HCI), chlorine (CI2), metals, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), and total organic compounds (TOCs). Identification of Products of Incomplete Combustion (PICs) will be performed using Methods 5041 and 8270C for all performance runs.

3. The metals to be analyzed in the exhaust gas are taken from the Health Risk Assessment (HRA). These metals are aluminum (AI), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), phosphorus (P), selenium (Se), silver (Ag), thallium (TI), tin (Sn), vanadium (V), and zinc (Zn). Principle Organic Hazardous Constituents (POHCs) will be surrogate compounds specified in the incinerator test plan.

4. Process samples, wet scrubber recirculation brine (brine) and process water will be tested for HRA metals, Toxicity Characteristic Leaching Procedure (TCLP) constituents (metals, VOCs, SVOCs, pesticides, herbicides), Specific Gravity, Free Liquids, Reactivity (scrubber only), Sodium Salts, and pH. Samples of residues (ash) will be analyzed for Reactivity, TCLP constituents, and Dioxins/Furans.

5. The surrogate trial burn is designed to demonstrate the DRE under conditions that will apply during the actual operating conditions.

6. Scheduling for the project is found in the Test Plan and will be updated as necessary. An example of a daily sample run schedule is found in the Sampling Standing Operating Procedures.

7. Individual project and quality records are identified in the Sampling Standing Operating Procedures and this QAPP. Examples of the Calibration Data Sheets, Isokinetic Run Sheets, and Chain-of-Custody (COC) Records are found in Attachment A. The QA/QC objectives for the analytical data are found in Attachment B.

Section IV. Data Quality Objectives for Measurement Data

1. The overall objective of the measurement data for each test is to demonstrate compliance with the RCRA permit and demonstrate an acceptable DRE.

2. Specific objectives of the MPF Trial Burn are as follows:

- a. To demonstrate the ability of the MPF to meet the regulatory requirements while maintaining steady state operation and a stable feed rate of the designated chemical agent.
- b. Demonstrate a DRE of 99.99 percent for the surrogate POHC.
- c. Demonstrate particulate emissions from the PAS outlet stack are less than or equal to 180 mg/m3, corrected to 7% O2.
- d. Demonstrate PM10 emissions from the PAS outlet stack are less than or equal to 0.24 lbs/hr or 0.016 gr/dscf.
- e. Demonstrate HCl emissions from the PAS outlet stack are less than or equal to 4 lbs/hr, or one percent of the HCl in the combustion gas streams prior to control, whichever is greater.
- f. Demonstrate the HRA metals emissions are less than or equal to the Tier II emissions levels as listed in 40 CFR Part 266.106.
- g. Demonstrate carbon monoxide (CO) concentrations are less than or equal to 100 ppmv, dry, corrected to 7% O2, over a 1-hour rolling average.

Section V. Project Narrative

- 1. The incinerator systems must demonstrate an ability to effectively treat the designated hazardous waste such that human health and the environment are protected. Section 3004 of RCRA (1976) requires the promulgation of performance standards which establish the levels of environmental protection that hazardous waste TSDFs must achieve and mandates the criteria against which applications for permits must be measured. At this site, the trial burns will be performed to demonstrate the operating parameters necessary for the incinerator system to meet the required performance standards. The data obtained during the trial burns will demonstrate compliance to regulations.
- 2. When identified analyses and the DRE fall within stated parameters of each system's Performance Test Plan, SSOP, and this QAPP, the trial burn will be considered successful.
- 3. Throughout the overall program, the sampling contractor will utilize EPA-approved sampling protocols. A more detailed explanation of the sampling and analytical methods can be found in the accompanying SSOP. The SSOP describes the sample types, sampling locations, sample handling and custody requirements, and analytical methods used.

- 4. The analytical laboratory will utilize EPA-approved analytical methods. The samples analyzed will include field blanks, laboratory blanks, laboratory control samples, and duplicate samples. Table 10-2 lists the field blanks to be collected. One set of process samples will be collected in duplicate.
- 5. Standard sampling and analytical instrumentation will be utilized and will meet or exceed EPA requirements. An independent peer review is not anticipated as part of this scope of work. A final readiness review will be performed by the Test Contractor to assure their organization has the appropriate manpower, equipment, and training in place prior to commencement of the trial burns.

Section VI. Special Training Requirements/Certification

1. Training requirements are established at CAMDS.

- a. The training program will train the facility personnel how to perform their duties by providing classroom instruction, hands-on training equipment, and on-the-job training. The program provides for both initial and annual refresher training relevant to employees' job positions within the facility for management of hazardous waste that includes, but is not limited to, personnel that handle, move, perform maintenance on, or operate hazardous waste management equipment.
- b. The program provides facility personnel with training relevant to their positions to respond effectively to emergencies, and familiarization with emergency procedures, emergency equipment, emergency systems, and implementation of the facility contingency plan.
- c. Relevant to the employees' duties, instruction will be provided in hazardous waste management procedures to ensure compliance with the treatment and storage permit.
- d. Included in the training will be an assessment of each individual to determine if they have successfully completed the training program and can effectively perform their duties.
- 2. Sampling contractor personnel will receive on-site training before they will be allowed into the CAMDS facility. The sampling personnel will be trained in their job by the sampling contractor.

Section VII. Documentation

1. Reports and documentation, as identified in Section 18.0 of this QAPP and Section 4.7 of the SSOP are produced by the Test Contractor and their subcontractors. They will be submitted to CAMDS and the State of Utah for final approval.

3. The final Performance and Compliance Test Reports will be submitted to the DSHW for final approval. These Test Reports will include copies of the field data sheets and calculations, analytical raw data and calculations, plant process data, and summaries of the data.

Section VIII. Sampling Process Design and Sampling Method Requirements

1. A detailed explanation of the sampling and analytical methods used for the Performance Test can be found in the SSOP. Throughout the overall program, the Test Contractor will utilize EPA-approved sampling protocols. If a deviation from the sampling and analysis methods is required, prior approval must be obtained from the CAMDS COR who will discuss it with DSHW. Any deviations from the specified protocols will be documented in the final report.

2. As presently configured, the MPF performance test will entail conducting one baseline and three performance runs. Each planned sampling series is referred to as a performance run. Three performance runs for the incinerator system are necessary for a successful Trial Burn. The SSOP contains a description of the protocols for gas sampling, residue sampling, the duct description, dimensions and sampling locations, and alternate gas sampling ports.

3. All measurements are required to meet project objectives and therefore, are classified as critical.

Section IX. Sample Handling and Custody Requirements

1. The purpose of COC procedures is to document the identity of the sample and its handling from its existence through all transfers of custody until it is transferred to the analytical laboratory and undergoes analysis and data reduction. Internal laboratory records document the custody of the sample through its final disposition.

2. All samples will be collected by the Test Contractor who will label the samples following a designated code system for this project. An example sample label is shown in Attachment A.

a. The code system will be developed by the Test Contractor to meet the requirements listed in the Work Plan. All samples are sealed and the volume of the sample is marked. All data for each sample run are recorded on a run sheet during each performance run. After each run, the data are checked for completeness.

c. The samples will then be packaged for shipment. A designated field technician will take custody, sign the COC forms, and deliver the samples to the laboratory.

d. The field technician will sign the appropriate forms relinquishing custody and the laboratory representative will sign the form indicating that they have taken custody of the samples.

3. When a sample arrives at the laboratory, it will be received by an individual with the COC authority who is trained in the laboratory's sample receiving and control methods.

a. The sample coolers will be opened by the sample custodian or their designee, and logged into the master sample log.

b. A laboratory internal COC form will be completed and the sample will be placed in locked storage. Laboratory analysts will sign out samples prior to analysis.

c. A standard form will be used by the sample custodian to record the location of the sample and any transfers of the sample to analytical personnel. This form will remain in the custody of the laboratory sample custodian until completion of the project, at which time they will be transferred to document control for filing with the project file when required.

Section X. Analytical Method Requirements

1. This section describes the analytical protocols that will be used to analyze the samples collected during the Trial Burns and Compliance Tests. Table 10-1 presents a summary of the analytical methods to be used. A more detailed description of the methodologies can be found in the SSOP. The QA procedures for the Performance Test will follow the basic guidelines given in the methods or the EPA handbook: QA/QC Procedures for Hazardous Waste Incineration. Should a failure in the analytical system occur, the laboratory will immediately notify the Test Contractor and the Test Contractor will notify CAMDS. Corrective action will be as directed by CAMDS.

2. The main functions of the laboratory include: preparation or purchase of the sorbent (Tenax™, Anasorb 747™, and XAD-2™) for the gas sampling, QC samples preparation, and analysis of the samples. Laboratory QC samples will include method blanks, blank spikes (calibration checks and laboratory control samples), matrix spikes, and replicates. These will be performed as required by the methods, or at least one round of samples per batch and one round every twenty samples. The field blank will be a sampling train assembled in the field, leak checked, let stand (including heating of the probe, filter housing) for the sample time, then recovered as other trains. Table 10-

2 presents the expected number of field samples sent for analysis. This table assumes the following:

a. Method 0031 (SMVOC) samples. Four tube sets and a single condensate collected for 40 minutes for a total of 160 minutes, plus a field blank pair for each run and a trip blank pair for each shipment of samples. Analysis will be for VOCs. The trip blanks will only be analyzed if compounds above acceptable (background) levels are detected in the field blank.

b. Method 0010 samples - One set of samples per run plus one field blank per Trial Burn/Compliance Test. Analysis will be for SVOCs.

c. Method 0023A samples. One set of samples per run plus one field blank per Trial Burn/Compliance Test. Analysis will be for PCDDs/PCDFs.

d. Method 0010 samples. One set of samples per run plus one field blank per Trial Burn/Compliance Test. Analysis will be for Semi-Volatile Total Organic Compounds (SVTOCs) and Non-Volatile Total Organic Compounds (NVTOCs).

e. Method 0060 samples. One set of samples per run plus one field blank per Trial Burn/Compliance Test. Analysis will be for the HRA metals and phosphorus.

f. Method 0050 samples. One set of samples per run plus one field blank per Trial Burn/Compliance Test. Analysis will be for HF, HCl, Cl₂.

g. Method 5i samples. One duplicate set of samples per run plus one field blank per Trial Burn/Compliance Test. Analysis will be for PM. Method 5i samples will be collected in conjunction with the Method 0050 train.

h. Method 0040 samples. One set of samples per run consisting of two field (Tedlar bag) samples and a field blank. Analysis will be for Volatile Total Organic Compounds (VTOCs).

i. Residue samples. Ash samples will be taken from the MPF trays at the end of each run and analyzed for reactivity, Dioxins/Furans, and full TCLP constituents.

j. Liquid Samples. Three brine samples will be collected for all Runs. The first brine sample will be collected one hour after sampling begins. The second sample will be collected at port change and the third sample will be collected during the last 60 minutes of the run.. Samples of the process water will be collected once per Trial Burn. The liquid samples will be analyzed for HRA metals, full TCLP constituents (metals, VOCs, SVOCs), reactivity, and pH, and PCDDs/PCDFs for brine only.

3. Selected compounds are spiked into various parts of the analytical method analysis scheme. Spiking locations are specified by in the referenced methods. Acceptance criteria for each method application specified below is presented in Attachment B.

For Method 5041A (SMVOC) and 8260B the following are specified:

2

3

4

5

6

7

8

Instrument:

Application	Compounds	Spiking Location					
Surrogates:	Bromofluorobenzene, 1,2- Dichloroethane-d4, and Toluene-d8	tubes, condensate & field sample purge vessel					
Internal Standards:	Fluorobenzene, Chlorobenzene-d5, and 1,4- Difluorobenzene	Purge vessel					
Matrix Spikes:	1,1-Dichloroethene, Benzene, Chlorobenzene, Toluene, and Trichloroethene, Tetrachloroethene	Blank tubes, condensate & field sample purge vessel					

For Method 0010/8270C the following are specified:

GC/MS

Application	Compounds	Spiking Location					
Surrogates:	2,4,6-Tribromophenol, 2- Fluorobiphenyl, 2- Fluorophenol, Nitrobenzene- d5, Phenol-d5, and Terphenyl- d14	Extraction Device					
Internal Standards:	1,4-Dichlorobenzene-d4, Naphthalene-d8, Perylene- d12, Acenaphthene-d10, Phenanthrene-d10, and Chrysene-d12	Sample Vials					
Matrix Spikes:	Acenaphthene, 2,4- Dinitrotoluene, pyrene, 1,4- Dichlorobenzene, 1,2,4-Trichlorobenzene, Hexachloroethane	Extraction Device					
Instrument:	GC/MS						

For Method 0023A/8290 the following are specified:

1

2

3

Application	Compounds	Spiking Location
Surrogate Standards:	³⁷ Cl ₄ -2,3,7,8-TCDD, ¹³ C ₁₂ -	XAD-2 Resin,
	1,2,3,4,7,8-HxCDD,	Extraction vessel
	¹³ C ₁₂ -2,3,4,7,8-PeCDF, ¹³ C ₁₂ -	
	1,2,3,4,7,8-HxCDF,	
	¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	
Internal Standards:	¹³ C ₁₂ -2,3,7,8-TCDD, ¹³ C ₁₂ -	Autosampler vial
	1,2,3,7,8-PeCDD,	·
	¹³ C ₁₂ -1,2,3,6,7,8-	
	HxCDD, 13C ₁₂ -1,2,3,4,6,7,8-	
	HpCDD,	
	¹³ C ₁₂ -OCDD, ¹³ C ₁₂ -2,3,7,8-	
	TCDF, ¹³ C ₁₂ -1,2,3,7,8-PeCDF,	
	¹³ C ₁₂ -1,2,3,6,7,8-HxCDF,	
1	¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF,	
_	¹³ C ₁₂ -OCDF	_
Recovery Standards:	¹³ C ₁₂ -1,2,3,4-TCDD, ¹³ C ₁₂ -	Extraction vessel
	1,2,3,7,8,9-HxCDD	
Instrument:	HRGC/HRMS	

Test Plan 05-74 5 February 2004

Table 10-1. Analytical Methods

Parameter	Matrix	Preparation	Analysis Method
VOCs	SMVOC Tubes and Condensate	5041A/5030B	5041A/8260B
SVOCs	XAD-2™/filter/condensate/rinsate	3542	8270C
SVTOCs and NVTOCs	XAD-2™/filter/condensate/rinsate	3542	GC/FID and Gravimetric
Total Particulate Matter	Filter/Probe rinse	Method 5i	Method 5i
PCDDs/PCDFs	XAD-2™/filter/rinsate	0023A	0023A/8290
VTOCs	Bag/condensate	0040/5030A	GC/FID
HF, HCl, and Cl ₂	Impinger solutions	9057	9057
HRA Metals and Phosphorus	Filter, rinsate, impinger solution	0060	6020, 7470A
COD	Ash, Brine	Method 410.1/.2	Method 410.1/.2
Reactive Cyanide	Ash, Brine	Chapter 7 Sec.7.3.3.2	9014
Reactive Sulfide	Ash, Brine	Chapter 7 Sec. 7.3.4.2	9034
TCLP VOCs	Slag/Brine - TCLP leachate	1311/5030B	8260B
TCLP SVOCs	Brine/water - TCLP leachate	1311/3510C/3540C	8270C
TCLP Herbicides	Brine/water - TCLP leachate	1311/8151A	8151A
TCLP Pesticides	Brine/water - TCLP leachate	1311/3510	8081
PCDDs/PCDFs	Brine	8290	8290
pH	Brine/water/residue	9095A/ASTM D1429	9095A/ASTM D1429
TCLP HRA Metals	Ash- TCLP leachate	1311/3010A/7470A	6010B/7470A

Table 10-2. Number of Samples

SAMPLE	MPF Trial Burn	Field DUPs (per Burn)	Field Blank (per test)	Trip Blank (perburn)
Method 0031	28	0	7	11
Method 0040	14	0	7	2
Method 0010-SVOCs	7	0	1	0
Method 0010-TOCs	7	o	1	0
Method 5i	14	0	1	0
Method 0023A	7	0	11	0
Method 0060	7	0	1	0
Method 0050	7	0	1	0
Ash	7	1	0	0_
Brine	7	1	0	0
Process Water	1	1	0	0

5 6 Method blanks, blank spikes, matrix spikes, and replicates will be performed according to the methods. Trip blanks are collected for only volatile organic compounds.

Section XI. Quality Control Requirement

QC checks are performed to ensure the collection of representative samples and the generation of valid analytical results on these samples. These checks will be performed by the project participants throughout the program under the guidance of the QA manager and the field and laboratory coordinators.

1. Data Collection and Sampling QC Procedures. QC checks for the process data collection and sampling aspects of this program will include, but are not limited to, the following:

a. Use of standardized forms and field notebooks to ensure completeness, traceability, and comparability of the process information and samples collected.

b. Field checking of standardized forms by a second person to ensure accuracy and completeness.

c. Strict adherence to the sample traceability procedures (i.e. chain-of-custody) outlined in Section 3.7 of the SSOP.

d. Submission of field-biased blanks.

e. Leak checks of sample trains before, during port change, and after sample collection.

2. Sampling Equipment QC Checks and Frequency.

Calibration of the field sampling equipment will be performed prior to and at the conclusion of the field sampling effort as required by the applicable EPA methods. Copies of the calibration sheets will be provided to CAMDS by the Test Contractor when the Test Contractor arrives on site. The Test Contractor will maintain an up-to-date list of sampling equipment including serial number and pertinent calibration data. Post-test calibrations and equipment checks will be provided to CAMDS before the Test Contractor removes the equipment from the site. Leak checks of the sample trains will be conducted in accordance with the protocol called for in each method. Leak checks will be conducted at the start and completion of testing, and at each port change. DSHW will have the option of observing all of the leak checks.

3. Sample Collection QC Checks.

Field biased blanks of reagents and collection media (de-ionized water, filters, impinger solutions, SMVOC tubes, XAD traps etc.) will be placed in appropriately cleaned and sized sample containers in the field and handled in the same way as actual field samples, to provide a QC check on sample handling.

during the entire preparative and analysis scheme.

31 32 33

34

35

1

2

4 5

6 7

8 9

10 11

12

13

14

15

16

17

18

19 20

21

22 23

24

25

26

2728

29

30

(6) See Section 10.0 for the anticipated minimum number of QC samples. The percent recovery of each matrix will be calculated as noted in Section 20.0. The following guidelines will be used in evaluating the data:

would assess the behavior of actual analyses in individual program samples

363738

(a) All recovery data will be evaluated to determine if the QC limits are being achieved

39 40 41

(b) Trends in the data will also be evaluated using the following criteria:

42 43

<u>1</u> All recovery values in any one analysis are outside the established limits,

44 45

2 Over 50% of the values for a given sample set are outside limits, or,

46 47 48

 $\underline{3}$ One compound is outside the limits in over 50% of the samples.

- (c) All recovery data which are outside the established limits will be evaluated by the following methods:
 - 1 All values that fall outside the QC limits described in the analytical method will be noted.
 - 2 An independent check of the calculation will be made.
 - 3 The method will be evaluated for problem areas.
 - 4 Corrective actions will be taken for problems identified.
 - 5 If feasible, samples will be rerun after corrective action is complete.
- (7) The results from the evaluation will be included in the final report.
- b. Reagents used in the laboratory are normally of analytical reagent grade or higher purity; each lot of acid or solvent used is checked for acceptability prior to laboratory use.
 - (1) All reagents are labeled with the date received and the date opened.
 - (2) The quality of the laboratory's deionized water is routinely checked.
 - (3) All glassware used in the sampling and analysis procedures are pre-cleaned according to the method requirements.
 - (4) Standard laboratory practices for laboratory cleanliness, personnel training, and other general requirements will be used.
 - (5) The results of these QC procedures will be included in the final report.

5. QC of Sorbents

- a. Sorbents used for the M0031 sampling will be purchased precleaned from the vendor and provided by the laboratory.
 - (1) The sorbents will be verified clean by the laboratory prior to sampling.
 - (2) The Tenax[™] and Anasorb747[™] will then be placed into pre-cleaned 15 X 100 mm glass tubes and held in place with glass wool plugs.
 - (3) Each tube will be conditioned at 250°C (±20°C) with a 20 mL flow of ultra high purity helium or nitrogen. The conditioning time will consist of 4 hours of heat, at least 4 hours of cooling, followed by 4 more hours of heat.

- (4) Tubes will then be placed into 25 X 150 mm, clean culture tubes while still hot.
- b. The quality of the Method 0031 tubes will be verified by GC/MS. A blank Tenax™ and Anasorb747 cartridge will be thermally desorbed into the GC/MS. The Tube batch will not be considered acceptable if there is more than 50 ng of any priority pollutant.
- c. The XAD-2™ resin traps for the semi-volatile organics train will be purchased precleaned by the laboratory and be provided to the sampling contractor. The sorbent will be verified clean by the laboratory prior to sampling. If required, the contracted laboratory will employ the following pre-cleaning steps. The XAD-2™ resin will be subjected to an initial double DI water rinse in accordance with the method.
- d. After these rinses are completed the resin shall be placed inside a soxhlet extractor with a glass wool plug and then will be subjected to the following series of extractions:

(1) DI Water 8 hours (2) Methanol 22 hours (3) Methylene Chloride 22 hours

1 2

e. The quality of the XAD will be verified by GC/MS. The resin used for the PCDD/ PCDF sampling will be analyzed by HRGC/HRMS to ensure the resin is useable.

Section XII. Instrument/Equipment Testing, Inspection, and Maintenance Requirements

- 1. The sampling contractor will follow an orderly program of positive actions to prevent the failure of equipment or instruments during use. This preventative maintenance and careful calibration helps to assure accurate measurements from field and laboratory instruments.
- 2. All equipment that is scheduled for field use will be cleaned and checked prior to calibration. Once the equipment has been calibrated, sample trains are assembled and leak checked in order to reduce problems in the field. An adequate supply of spare parts will be available in the field to minimize downtime from equipment failure.
- 3. The CAMDS CEMS systems are operated and maintained in accordance with the applicable manuals. Maintenance is performed on a regularly scheduled basis prior to use in the field and includes, but is not limited to, purging of sample lines, checking pump oil and belts, cleaning rotameters or other sample flow monitoring devices, checking sample capillaries and mirrors, etc. Routine maintenance procedures are critical for ensuring the continuous, trouble-free operation of the CEMS in adverse environments.

4. The subcontractor laboratories will maintain their instrumentation in accordance with the instrument manufacturers specifications and appropriate methods. The laboratories will maintain a stock of replacement parts to minimize downtime resulting from foreseeable breakage or typical consumption.

Section XIII. Instrument Calibration and Frequency

9 10 11

12

8

2

3

4

5 6 7

> This section contains information and details pertaining to the calibration of both the sampling and the analytical systems. Analytical system discussions include those used in the laboratory as well as those utilized in the field.

13 14 15

16

17

18

19

20

1. Sampling Equipment. All sampling equipment to be used for this program will be calibrated prior to being mobilized to the site. The sampling contractor will supply spare equipment and spare parts to minimize failure of the sampling equipment. Calibration procedures will follow guidelines provided in the EPA document entitled "Quality Assurance Handbook for Air Pollution Measurement Systems; Volume III - Stationary Source Specific Methods" EPA-600/4-77-027b and MIL STD 45-662-A. All calibrations and checks will be performed prior to and at the conclusion of the trial burn as follows:

21 22 13

.4

25

26

a. Probe Nozzles - using a micrometer, measure the inside diameter of the nozzle to the nearest 0.025 mm (0.001 in.). Make measurements at three separate places across the diameter and obtain the average of the measurements. The difference between the high and low values should not exceed 0.1 mm (0.004 in.). Post test check - inspect for damage.

27 28 29

30

b. Pitot Tubes - measure for appropriate spacing and dimensions or calibrate in a wind tunnel. The rejection criteria is provided on the calibration sheet. Post test check - inspect for damage.

31 32 33

c. Thermocouples - verify against a mercury-in-glass thermometer at three points including the anticipated measurement range. Acceptance limits are: impinger ± $2^{\circ}F$, dry gas meter $\pm 5.4^{\circ}F$, and duct $\pm 1.5\%$ of the duct temperature.

35 36 37

34

d. Dry Gas Meters - calibrated in accordance with EPA Method 5. Acceptance criteria: pre-test volume correction factor (Yc) and delta H ±5%.

38 39 40

41

42

e. Balance - service and certify annually by the manufacturer. Prior to obtaining first weights confirm accuracy by placing a known S-type weight on the balance. Balances will be used for weighing the impingers and weighing the samples before sending them to the laboratory.

43 44 45

2. Laboratory Equipment

16 47

48

A summary of the calibration procedures and frequency for the laboratory instruments to be used for this project is provided in Table 13-1.

Table 13-1. Calibration Procedures for Analytical Methods

Method	Analytical Equipment	Calibration Curve	Calibration Checks	Target Criteria
6010B	ICP	Calibration Blank and one standard	Verified every 10 samples and at the end of the run sequence.	5 % RSD
7470A/7471 A	CVAAS	Calibration Blank and 5 standards	Verified every 10 samples and at the end of the run sequence.	Correlation coefficient of > 0.995
6020	ICP/MS	Calibration Blank and one standard	Verified every 10 samples and at the end of the run sequence.	Correlation coefficient of > 0.995
5041A	GC/MS	Five point calibration	Verified every 12 hour tune period	Variability of average RRF of 20% RSD for Method Compounds
8270C	GC/MS	Five point calibration	Verified every 12 hour tune period	Variability of average RRF of 30% RSD
8290	HRGC/HRMS	Five point calibration	Verified every 12 hour tune period	Variability of average RRF of 30% RSD
0040	GC	Three Point Calibration - in duplicate	Verified at end	Correlation coefficient of > 0.995
8081A	GC	Five point calibration	Verified every 12 hours	%RSD _. 25%
8151A	GC	Five point calibration	Verified every 12 hours	%RSD _. 25%
Method 5i	Analytical Balance	Class S Weights	Beginning and end of day	Self-taring
7199	IC	Four point calibration	Verified every 10 samples and at the end of the sequence	Correlation Coefficient > 0.995
9057	IC	Four point calibration	Verified every 10 samples and at the end of the sequence	Correlation Coefficient > 0.995

Section XIV. Inspection/Acceptance Requirements for Supplies and Consumables

The only consumables used in the sampling for the Performance Test will be sample bottles and the reagents used in the impingers and recovery of the samples. The sample containers will be purchased pre-cleaned with a certificate of analysis. Reagents used in the laboratory are of analytical reagent grade or higher purity; each lot of acid or solvent used is checked for acceptability prior to laboratory use. All reagents are labeled with the date received and the date opened.

Section XV. Data Acquisition Requirements

1. CAMDS will be responsible for collecting operations data, the Permit-required monitoring information, and system operating data in accordance with Standard Operating Procedures.

2. Process data to be collected includes chamber exhaust gas temperature, afterburner exhaust gas temperature, feed rate, furnace pressure, afterburner exhaust gas pressure drop, quench brine pressure, quench exhaust gas temperature, venturi pressure drop, venturi brine flow, clean liquor flow to scrubber, clean liquor pH, clean liquor pressure differential, quench brine pH, quench brine density, CO concentration, CO₂ concentration, and residence time.

Section XVI. Data Management

Specific QC measures will be used to ensure the generation of reliable data from sampling and analysis activities. Proper collection and organization of accurate information followed by clear and concise reporting of the data is a primary goal in all projects.

1. Field Data Reduction.

 a. Attachment A contains the standardized data sheets that will be used to record gas sampling data.

b. The data collected from each train will be reviewed in its entirety in the field by the Test Contractor.

c. Raw sampling data will be reduced on a daily basis. Isokinetic sampling rates and sample volumes will be reported each day. Errors or discrepancies will be noted in a field notebook.

- d. The Stack Sampling Coordinator has the authority to institute corrective actions in the field. The Test Contractor will also be consulted for resolution if the situation warrants. At a minimum, the Field QC Coordinator is apprised of all deviations from the standard protocol.
- **2.** Laboratory Analysis Data Reduction. Analytical results will be reduced to concentration units specified by the analytical procedure, using the equations given in the analytical procedures.

- a. If the units are not specified, data from the analysis of liquid samples will be reported in units of mg/L. The results for liquid samples will be reported on an as received basis.
- b. Solid samples will be reported in mg/kg. Solid samples will only result from collection in heated dry locations, so the results will be on a dry basis.
- c. Gas samples will be reported on a concentration per dry standard cubic unit of measure.
- d. Results of the analysis of audit cylinders will be reported in parts per billion.
- **3. Blank Corrected Data.** Results from the metal emissions train will be blank corrected as instructed in Method 0060. A separate blank correction will be made for the front half and the back half of the Method 0060 sample train. The raw data will also be reported. The other data developed for each Trial Burn or Compliance Test will not be blank corrected.

Section XVII. Assessment and Response Actions

The Performance Test QA program will comply with EPA and state requirements for audits. These type of audits include performance and system audits as independent checks on the quality of data obtained from sampling, analysis, and data gathering activities. The procedures and techniques in place will ensure the audit will be representative of the measurement process in normal operation. Either type of audit may show the need for corrective action.

1. Performance Audits. A performance audit checks the performance or accuracy of measurements being made. The sampling and analysis segments of the project are checked in a performance audit. An audit cylinder or spiked audit samples may be supplied by the DSHW during a Trial Burn or Compliance Test. In the event an audit cylinder is supplied, it will be sampled and analyzed in the same manner as the field samples. If a spiked sample is supplied, it will be extracted and analyzed according to the same methods used for the field samples.

Test Plan 05-74 5 February 2004

2. System Audits. A system audit involves observations by a subcontractor or a 1 regulatory agency, who will try to ascertain that the work is being performed in 2 accordance with the methods specified in this QAPP and Work Plan. a. Field Audits. 5 6 (1) The Field QC Coordinator will observe all activities to ensure that the Work 7 Plan and QAPP are being followed, that sample COC is accurate before samples 8 are transported to the laboratory, report any discrepancies to the Test Contractor, 9 complete a QA check list and maintain a log of discrepancies for the Test 10 Contractor and QA Officer, and attend performance run meetings. 11 12 (2) A representative from the DSHW is expected to be on-site to observe all 13 sampling activities. The point of contact for DSHW staff during the Performance 14 Tests will be the designated CAMDS Representative. 15 16 (3) During each performance run, the Test Contractor performs a system audit, 17 which consists of an inspection and review of the total sampling system. This 18 consists of: 19 20 (a) Setting up a pre-test leak check of the sampling trains. 21 22 (b) Isokinetic sampling check (if required). 23 24 25 (c) Final leak check of the sampling train. 26 (d) Sample recovery. 27 28 (e) Sample analyses - if done on-site. 29 30 (4) Results of the leak checks are noted on the field data sheets while the 31 remaining item checks are documented on the audit checklist. When necessary, 32 audit samples are analyzed along with the test samples. 33 34 b. LAB Audit. At the direction of CAMDS, an audit of each laboratory may be 35 conducted by the Test Contractor personnel who will ascertain that work is being 36 performed in accordance with the methods specified in the QAPP and the Work 37 Plan. 38 39 40 Section XVIII. Reports to Management 41 42 1. Internal Reports 43 44 45 a. The CAMDS Laboratory Services Coordinator prepares written reports on QC activities for the Quality Assurance Officer as needed. These reports detail the

results of quality control procedures, problems encountered, and any corrective

action, which may have been required.

46

47

1	
2 3 4	b. All Corrective Action Forms are submitted to the QA Officer for initial approval of the corrective action planned and a copy is provided to the Test Director. All system audit reports are provided to the Test Director.
5	2. Reports to Client
7 8 9	a. The data transmitted will contain a summary of QA/QC activities. This summary will include:
10 11	(1) Instrument performance/system audits
12 13	(2) Adherence to protocol
14 15	(3) Sample custody
16 17	(4) Document control
18 19	(5) Data entry including error handling, correction, and additions
20 21	(6) Data traceability and completeness
22 23	(7) Data calculation and evaluation
24 25	(8) Quality problems found
26 27	(9) Corrective actions taken
28 29	(10) Data accuracy, precision, and completeness
30 31 32 33 34	b. The final report will include a section summarizing QA/QC activities during the program. The Test Director, Laboratory Analysis Coordinator, and the QA Officer will participate in preparing this section.
35 36 37 38	Section XIX. Data Review, Validation and Verification Requirements
39	1. Data Review
40 41 42 43 44	a. Field sampling data will be reviewed by the Test Contractor based on his or her judgment of the representativeness of the sample, maintenance and cleanliness of sampling equipment, and the adherence to an approved, written sample collection procedure.

b. All field data will be recorded on pre-formatted forms. The data sheets will be

reviewed at the end of each run by the Test Contractor, and the CAMDS Stack

Sampling Coordinator to ensure each sheet is properly completed.

46

47

- (1) Gas sampling data will be reduced on-site to verify isokinetic sampling rates.
- (2) The sampling contractor's isokinetic computer program will be checked for accuracy against a validated program.
- c. Laboratory data will be reviewed by the analyst generating the data. Then the data will be reviewed by the supervisor. The Laboratory QC personnel will review the data per the laboratory procedure before the project report is prepared by the Laboratory Project Manager. When the analytical data is submitted to the sampling contractor, the data will again be reviewed before it is used to prepare the Sampling and Analysis Report.

2. Data Validation

- a. Data validation is the process of accepting or rejecting data on the basis of established criteria. Analytical and sampling data will be validated by the Test Contractor's QC personnel using criteria outlined in this QAPP. The Test Contractor QC personnel will use validation methods and criteria appropriate to the type of data, even that judged to be an "outlying" or spurious value. The persons validating the data will have sufficient knowledge (i.e. at least one year experience in data validation) of the sampling and analytical methods to identify questionable values and deviations from criteria specified in the methods and the QAPP.
- b. The results from the field and laboratory method blanks, replicate samples, and internal QC samples will be used to further validate analytical results. Analytical results on the field blanks and replicate samples also are valuable for validation of sample collection. The QA/QC personnel will review all laboratory and sampling raw data to verify calculated results presented, consistency, duplicate sample analysis, spike recoveries, tests for outliers, and transmittal errors.
- c. The following criteria will be used to evaluate the field sampling data:
 - (1) Use of approved test procedures.
 - (2) Proper operation of the process being tested.
 - (3) Use of properly operating and calibrated equipment.
 - (4) Leak checks conducted before, during port change, and after tests.
 - (5) Use of reagents that have conformed to QC specified criteria.
 - (6) Proper traceability maintained.
- d. The criteria listed below will be used to evaluate analytical data:
 - (1) Use of approved analytical procedures.

- (2) Use of properly operating and calibrated instrumentation.
- (3) Precision and accuracy achieved should be comparable to that achieved in previous analytical programs and consistent with the objectives stated in Section 20.0 in this QAPP.

3. Identification and Treatment of Outliers

- a. Any point which deviates from others in its set of measurements will be investigated; however, the suspected outlier will be recorded and retained in the data while it is investigated. One or both of the following tests will be used to identify outliers:
 - (1) Dixon's test for extreme observations is an easily computed procedure for determining whether a single very large or very small value is consistent with the remaining data.
 - (2) The one-tailed t-test for difference may also be used in this case.
- b. If more than one outlier is suspected in the same data set, other statistical sources will be consulted, and the most appropriate test of hypothesis will be used and documented.
- c. Because an outlier may result from unique circumstances at the time of sample analysis or data collection, those persons involved in the analysis and data reduction will be consulted. This evaluation may provide an experimental basis for the outlier to determine its effect on the conclusions. In many cases, two data sets will be reported, one including and excluding the outlier.

4. Calculation OF DRE

a. The primary purpose of the MPF Performance Test is to determine the DRE of the surrogate POHC. If no POHC is detected above the Limit of Quantification (LOQ), then the LOQ will be used as the concentration of surrogate in the exhaust gas. The LOQ value will be used in the DRE calculation and the DRE will be reported as greater than (>) the value calculated. The LOQ is equivalent to the Practical Quantitation Limit (PQL). This calculation is given as an example for the DRE. The DRE is a percentage and will be calculated for agent constituents from the following formula:

$$DRE = \underbrace{W_{in} - W_{out}}_{W_{in}} \times 100$$

where:

W_{in} = Mass Feed Rate of surrogate (Gross Feed Rate x Purity)
 W_{out} = Mass Emission Rate of surrogate in Exhaust Gas

Attachment B. Attachment B contains goals for sampling, objectives for accuracy, and

QA/QC objectives for the analyses of samples for this project are presented in

.4

a. Precision is defined as the degree of mutual agreement among individual measurements made under prescribed conditions. Precision goals have been included in Attachment B.

b. Precision will be calculated for laboratory duplicate analysis using the following equations:

RPD =
$$[(X_1 - X_2) / ((X_1 + X_2) / 2)] \times 100$$

where:

objectives for precision.

1. Precision

RPD = Relative Percent Difference

(standard deviation / average value) x 100

X₁ = Highest Analytical resultX₂ = Lowest Analytical Result

- c. Calculation of the precision for each of the analyses of sample types will be based on different criteria and is taken from the EPA handbook: <u>QA/QC Procedures</u> for Hazardous Waste Incineration.
 - (1) The precision for the HCl samples will be determined by the RPD calculated from the analysis of a matrix spike and a matrix spike duplicate. A matrix spike and matrix spike duplicate will be used because the field samples have a history of very low concentrations.
 - (2) The precision of the SMVOC samples will be based on the RSD calculated from the analysis of the triplicate laboratory control sample. The precision of the semi-volatile compounds will be based on the RSD from the analysis of a triplicate analysis of a spiked sample. The results of the analysis of spiked sample will be used because of the historically low concentrations found in field samples.
 - (3) The precision for the metal emission samples will be based on a matrix spike and matrix spike duplicate. Low concentrations of metals in the field samples necessitates the use of matrix spike samples.

2. Accuracy

- a. Accuracy is the degree of agreement of a measurement to an accepted reference or true value. The accuracy of the trial burn data will be determined from analysis of samples spiked with a known concentration. The number of spiked samples and the spiking levels will be taken from the respective methods. Accuracy objectives have been set and are presented in Attachment B.
- b. The formula which will be used to assess the accuracy of the QA/QC laboratory (e.g. matrix and spike analysis) data is as follows:

$$%R = (\underline{Q_{ss} - Q_{us}}) \times 100$$

$$Q_s$$

where:

%R = Percent recovery

Q_{ss} = Quantity of Analyte Found in the Spike Sample Q_{us} = Quantity of Analyte Found in the Un-spiked Sample

 Q_s = Quantity of Added Spike

c. Calculation of the accuracy for each of the analyses of sample types will be based on different criteria and is taken from the EPA handbook: QA/QC Procedures for Hazardous Waste Incineration.

- (1) The accuracy for the HCl samples will be determined by the %R calculated from the analysis of a matrix spike and a matrix spike duplicate.
- (2) The accuracy of the SMVOC samples will be based on the %R calculated from the analysis of the triplicate laboratory control sample, %R of surrogate spikes, and %R of laboratory control samples. The accuracy of the semi-volatile compounds will be based on the %R from the analysis of a blank spiked sample %R of surrogate spikes, and %R of laboratory control samples.
- (3) The accuracy for the metal emission samples will be based on the analysis of a matrix spike and matrix spike duplicate.

3. Completeness

- a. Completeness is defined as the amount of valid data from a measurement system compared to the amount that was expected to be obtained under optimal normal conditions. The completeness goal is to have 100 percent of the data valid, in that at least six valid performance runs are needed for each Trial Burn/Compliance Test. Acceptable results must be obtained for all six performance runs. The completeness objective for the entire monitoring project is to obtain a certain amount of data needed to complete the statistical design (EPA QA/QC Handbook, 1990).
- b. Completeness will be reported as the percentage of all measurements judged to be valid. Every attempt will be made to ensure that all data generated will be valid data. If data appears questionable based on circumstances that occurred or were

observed during the field sampling additional runs will be completed as soon as the system can be reset to ensure that three performance runs are completed. In reality, some samples may be lost in laboratory accidents, and some results may be deemed questionable based on laboratory QC procedures. The completeness objective may be met at less than 100 percent completeness depending on the number of samples and the critical nature of the missing data, but usually this requires more than 90 percent completeness.

c. The following formula will be used to determine completeness:

where:

V

Т

C = Percent Completeness

Number of Measurements Judged ValidTotal Number of Planned Measurements

4. Representativeness and Comparability

a. Representativeness is defined as "the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, process condition, or an environmental condition."

b. Comparability is defined as "expressing the confidence with which one data set can be compared to another" (Interim Guidelines and Specifications for Preparing QAPPs).

c. It is recognized that the usefulness of the data is also contingent upon meeting the criteria for representativeness and comparability. Wherever possible, reference methods and standard sampling procedures will be used.

(1) The representativeness QA objective is that all measurements be representative of the media and operation being evaluated.

(2) The detailed requirements for HF, HCl, Cl₂, HRA metals (Al, Sb, As, Ba, Be, B, Cd, Cr, Co, Cu, Pb, Mn, Hg, Ni, Se, Ag, Tl, Sn, V and Zn), phosphorus, O₂, CO, CO₂, moisture, particulates, VOCs, SVOCs, TOCs, and PCDDs/PCDFs given in their respective methods will be followed to ensure representative sampling.

 d. The comparability QA objective is that all data resulting from sampling and analysis be comparable with other representative measurements made by the sampling contractor, or another organization on this or similar processes operating under similar conditions. The use of published sampling and analytical methods and standard reporting units will aid in ensuring the comparability of the data.

5. Detection Limits

2 3 4

5 6

1

a. The PQLs for parameters to be analyzed for the Performance Tests are included in Attachment B. The PQLs were derived from the laboratory's standard operating procedures and the analytical methods referenced in this document. These limits will be compared to the actual analytical results in the final report.

Appendix J Attachment A

1

2

3

5

Examples of Chain of
Custody Forms,
Stack Sampling Record Sheets,
and Sample Labels

Table of Contents

Title

Chain of Custody Record Stack Geometry & Gas Velocity
Data Type S. Pilot Inspection Form Isokinetic Flue Gas
Sampling Data Sheet VOST Data Sheet Nozzle Calibration
Data Sheet Traverse Point Location for Circular and
Rectangular Ducts Sampling Train Setup and Recovery
Sheet K -Factor Calculation Sheet Calculation for Desired
Nozzle Diameter Field Moisture Determination Sample
Train Tracking Form

CHAIN OF JSTODY RECORD

Project Name Project No.: Sampling Date(s): Laboratory: Laboratory P.O. #: Shipping Airbill No.: Shipping Date(s): Shipper's Name:	1			_//	9/00/sta	Soll Comen	ole Seement	MATR	<u>*</u>		/	Se Mellels					7 /	SALY SALY SALY SALY SALY SALY SALY SALY	7	7		
Sample Code	Sampled Date	Size	nteiner G/P	-/₹ /	6/	₹/₹		\display \text{\interpolation} \text{\text{\interpolation}}	ource Descrip	ėlas.	74	/३/	E /£	₹/8}/	4/4	/8/.	डे/र्ट	7 /	'/	/	2	
	Cara	3128	- 3//-	11	\uparrow	H	4	1 -	once pescup	uon	11	+	11	1	11	+	1-1	-{-	+	1	Comments	
		 	+	+-	+	╁┤	+	-	···		╂┩	+	╀┦	+	╁╌┼		╀┤	+	+	\vdash	ļ	
			 	╁┼	4-	\vdash	+				1-1	-	╁┤	-	++	4	\vdash	4	+	Н	<u> </u>	
		ļ		#	\perp	\sqcup	4				$\downarrow \downarrow$	_	\sqcup	\bot	14	4	\sqcup	\bot	1	Ц		
		<u> </u>	<u> </u>	$\perp \downarrow$	<u> </u>	Ш					П	\perp		\perp	\coprod		Ш	\perp	L			
			<u></u>		1		-				П					Т	П	T	Ţ			
				П	Τ	П	\top				П	\top	\prod	T	П				1			
				11		\sqcap	十	1		·····	11	+	††	+	11	十	11	+	十	Н		
		<u> </u>	 	++	+	11	+	-				+	╁┤	+	╁╁	+	╁	+	┿	Н		
		 	 	╂┼	┿	╁	+	+			╂┼	+	+-	+	┼┼	+	╂┉┼	+	╀	Н	 	
			 	++		\vdash	-	-			┦┦	_ _	+	_	$\downarrow \downarrow$			4	$oldsymbol{\perp}$	Ц		
				Ц.	1	Ш	_				Ш			\bot	Ц	\perp			L		<u> </u>	
					\perp	Ш		<u> </u>														
					T	П					П	T	П	\top	П	T	П	T	Τ			
				П	1	П	\top				T	1	17	\top	11	1	T	\top		П		
			†	$\dagger \dagger$	\dagger	$\dagger \dagger$	\dagger	1	· · · · · · · · · · · · · · · · · · ·		\vdash	+	†+	+	††	+	† †	+	+	Н		
		 	 	++	+	╁┼	+	+	·		┯	+	┿	+	╁╅	+	┼┤	+	+.	H	 	
			 	╀	+	╀	+		· · · · · · · · · · · · · · · · · · ·		₩	+	╂╌╂	+	┿	+	╀	+	+	Н		
		 	<u> </u>	11	-	\sqcup	\bot	<u> </u>			\sqcup	\bot	\sqcup	4	$\downarrow \downarrow$		\sqcup	\perp	1	Ц		
						Ш			···													
							_				П		$ \top $	T		T	П	T	Γ			
Relinquished by:		Date/T	ime:						Relinquish	ed by:						٥	ate/	Time):			
Received by:		Date/T	ime:						Received b	y:	· · · · · · · · · · · · · · · · · · ·					0	Date/Time:					
REMARKS (*):	,																					

WHITE - LABORATORY

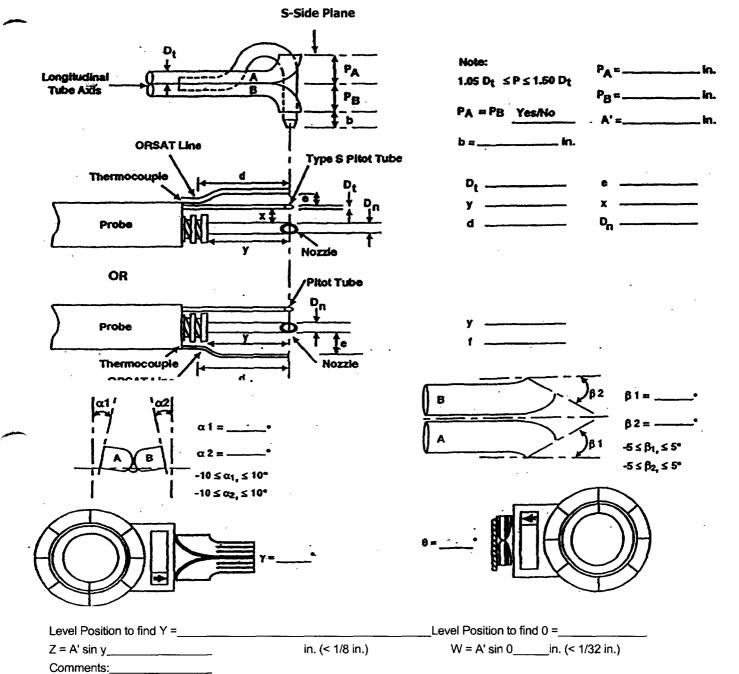
YELLOW - LABORATORY COPY .

PINK - OFFICE COPY

GOLD - FIELD COPY

STACK GEOMETRY AND GAS VELOCITY DATA

Date:		Project No.'.										
ient:		Sample Location:										
Facility:		Load Condition:										
Run No.:		Operator:										
Barometric Pressure (in. Hg):		Meterbox No.:										
% Moisture:		Static (in. H ₂ 0):									
Pitot Tube ID:		Pitot Tube Coe	efficient:									
Post Leak Check:		Stack Diamete	er (in.):									
Measurement Device: Micromanometer: 10" Manometer. Magnehelic: Other: Explain:	Schematic of Stack Cross Section: Stack Diameters Upstream: Stack Diameters Downstream											
	Manom. Cyclonic Reading Flow in H ₂ O Null Angle	Time (24 hr. clock)	Sample Point	Stack Temp °F or °C	Manom. Reading in H ₂ O	Cyclonic Flow Null Angle						
						_						
					 							
					_							
	-	·				<u> </u>						
												


Yes/No

<u>63/110</u>

Tubing Diameter, Dt

Pilot Tube Opening Damaged?

Yes/No

Dt = External Pitot Tube Diameter

Calibration Required?

A = Distance Between Tips (PA+ PS) inches

Dt = 3/16" to 3/8" D_n=1/2"

Checked by:__ QA/QC by:___

> x ≥ 3/4" b>o

. Yes No

Specifications (EPA Method 2)

y ≥3" d>3" e ≥ 3/4" Pa =Pb

Date:_____

Date:

1.05 Dt ≤ P ≤ 1.50 Dt

Isokinetic Flue Gas Sampling Data Sheet

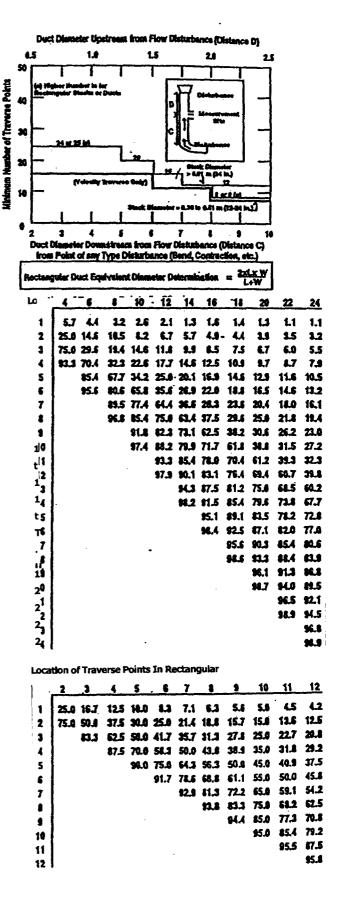
Client: Facility: Source: Sample Location: Stack Diameter: Date: Run No.: Operator: Meterbox No.:			TANT - FILL IN ALL BLANKS rd at the Start of Each Test Point SKETCH	Train Prepared By: Pitot Number and Side: Pitot Tube CP: Filter No.: Ambient Temp., °F: Bar. Pressure, In. Hg.: Assumed Moisture, %: Heater Box Setting, °F: Nozzle # / Dia., In.: Probe Length / Material: Probe Heater Setting:	Sheetof
Clock Tim	Pitot Gas In	IInche ^c S H Desired Actual	Temper t ^h ure, Vacuum Silica Inlet Outlet I~n. Gel Gauge H Cond.		°F °C XAD Probe Filter Cond Probe Outlet
Train Leak Check: Before Test: After Test: Pitot Tube Leak Check	CF in Seconds at In. Hg CF in Seconds at In. Hg Initial Final Port		Static Pressure	Comments:	

Test Plan 05-, February 2004

VOST DATA SHEET

Project No.:		Plow Rate (Lpm) DGM Y at Lpm					
Client							
Facility							
Source		Barometric Pressure					
Sample Location	·	Operator_			·		
DGM No.:		Sample P	oint Locat	lon			
Run No.		Port _		Point		-	
Train Leak Check- Initial: VAC InN	1g, A InMg, se	С					
Train Leak Check - Final: VAC inM	lg, <u>A InMg, 'se</u>	<u>C</u>					
			Cas Sa	imple Temp	-	numn	
Clods Sampling Rotameter Time Time Reading . (24 hr) (min) Umin.	Gas Sample Volume liters	1st cond. Outlet temp. °C	At Dry Inlet .C	Gas Outlet	Probe Temp. 'F	. pump Vacuum in. Gau ^{Hg}	
	- ***						
sample Trap I.D. COMMEN T S:							
ield Blank -	····				······································		
TENAX:							
TENAXtCHARCOAL:							
Sample							
Sample TENAX:	**-		·- ·-			<u> </u>	

Test Plan 05-74 5 February 2004


NOZZLE CALIBRATION

		Nozzle			
Nozzle No.	α	b	С	Average	Set No.
					
	 .		,		
			•		
		<u> </u>			
				<u></u>	
		<u> </u>			
	·				
				· · · · · · · · · · · · · · · · · · ·	

Traverse Point Location for Circular and Rectangular Ducts

Project No.:	
Client:	
Date:	
Sampling Location:	
Internal Stack Diameter:	
Nipple Length:	
Total Stack Diameter:	
Nearest Upstream Disturbance (C):	
Nearest Downstream Disturbance (D):	
Calculator:	

		1	2	3	4	5
. جنمتيمور	Traverse Point	Fraction of Stack ID 1	Stack	Point 1 2=PO"	, P? Length	Traverse Point inside of Far Wag to Outside of Port Nipple (3 + 4 = Point)
	1					
	2					j
	3					i i
	4					1
	5					
	6					
	τ				∼.	
	8					
	9					
	10					
	11					Į.
	12					
	13					
	14					
	15					
	16		-			
	<u>17</u>					
	18					
	19					
	20					
	21					
	22					
	.i 23 24					

SAMPLING TRAIN SETUP AND RECOVERY SHEET

						Setup	Recovery	
Project No.:				Date:				
*****				Run No.:				
•				Train Type:				
Source:				Recovery	' Perso	on:		
FRONT HALF						_		
Filter No.:						Comments	:	
Thimble No.:								
XAD Trap No.:				T		Comments		
		 		 		Comments	·	
XAD Final Wt. (g):				 				
XAD Initial Wt.(g):		-	···	 				
Net Collected (g):		<u> </u>		<u> </u>			···-	
IMPINGERS	·		,	 -				
Impinger No.:				·				
Reagent:						· · · · · · · · · · · · · · · · · · ·		
Final Volume (ml / g):						· · · · · · · · · · · · · · · · · · ·		
Initial Volume (ml / g):				· · · · · · · · · · · · · · · · · · ·				
Net Collected (ml / g):	<u> </u>						<u></u>	
Impinger No.:	 			<u> </u>				
Reagent:			·					
Final Volume (ml/g):								
Initial Volume (ml/g):								
Net Collected (ml / g):								
								
Silica Gel Impinger:								
Final Volume (ml / g):								
Initial Volume (ml / g):								
Net Collected (ml / g):	L							

TOTAL MOISTURE (Impingers and Silica Gel) (g) = _____

Project No.:		Date:
Client:		Source:
Plant:		Sample Location:
Calculated by:		Checked by:

TM & TS in °R

$$K = \frac{\Delta H}{\Delta P} = 846.72 \text{ (DN)}^4 \Delta H_{@} \text{ CP}^2 \text{ (Md)}^2 \left(\frac{\text{MWD}}{\text{MWS}}\right) \left(\frac{\text{IM}}{\text{TS}}\right) \left(\frac{PS}{PM}\right) \text{ ; } \Delta H = K\Delta P$$

```
K = \frac{\Delta H}{\Delta P} = 846.72 \ ( )^4 \ ( ) \ ( )^2 \ ( )^2 \ \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \ \left\{ \begin{array}{c} \\ \\
```

$$K =$$
 $\Delta \bar{P} =$ $\Delta \bar{H} =$ $\Delta P_{MAX} =$ $\Delta H_{MAX} =$

$$K = \frac{\Delta H}{\Delta P} = 846.72 \ ()^4 \ () \ ()^2 \ ()^2 \ ()^2 \ ()$$

$$K =$$
 $\Delta \bar{P} =$ $\Delta \bar{H} =$ $\Delta P_{MAX} =$ $\Delta H_{MAX} =$

Calculation for Desired Nozzle

Project No.:....

Date: .

Sample Location: ..

Calculated by:...

TM = _____ °F + 460 =

#/#-mole

Sampling Rate, dscfm, Qm

(1) @ ΔH @ = 0.75 (normal)

PB (PM) =(2) At any other ∆H:

 $\begin{pmatrix} \Delta H \\ \Delta H_{\odot} \end{pmatrix}$ x 0.75 = $\begin{pmatrix} ----- \\ ----- \end{pmatrix}$ 0.75 = $\frac{1}{2}$ PST = 13.6 =

PS (PB ± PST) =

 $= \left[\left(\frac{\text{(TS) (MWS)}}{\text{(PS) ($\triangle P_{AV}$)}} \right)^{1/2} \quad \left(\frac{0.0357 \ (O_{M}) \ (PM)}{\text{(TM) (C_{p}) (MD)}} \right) \right]^{1/2}$

inches D_N Actual =

Field Moisture Determination

ient: ocation: un No.:			Project No.: Date: Operator: <u>Data</u>		
	<u>1</u>	<u>2</u>	<u>3</u>		
Final mL _	.			Container No.	
Initial mL _				Final gm	
Net mL _		<u> </u>		Intial gm	
Total Moisture	(Net mL +	Net gm) =		Net gm	
(1) PB = (2) VM Net = _				lo.: libration Factor =	
(3) TM Avg =					
(4) PM Avg = +	-		Orifice in. H ₂ O ×	 13.6 = _+ orifice in.H _e	
= <u>-</u>			Vacuum gage In. H	lg (when meter is before pump)	
(6) VW = mL H ₂	O+gm Sili	ca Gel =	=		
			())+()		

Lowell19.wpd

Sample Train Tracking Form

Sample Train:	Date:	
Location:	Run:	
Sample ID:	*	
XAD Lab ID No.:		Lab Chemist:
Trap Description:		Operator:
	Stack	QA:
Train Set Up By:	Date:	Time:
Transported to Location By:	Date:	Time:
Received at Location By:	Date:	Time:
Transported to Recovery Area By:	Date:	Time:
Received at Recovery Area By:	Date:	Time:
Train Recovered By:	Date:	Time:
Comments:		
-		
		
·		

Method 0023A - PCDD/PCDF

Appendix J Attachment B

QA/QC Objectives for Analytical Methods

Appendix J, Attachment B.

QA/QC Objectives and Target Analyte Lists

List of Tables

Tal	ole	Page No
1	Summary QA/QC Criteria for Volatile Total Organic Compounds	J-55
2	Summary QA/QC Criteria for Total Organics - Semivolatile Organics	J-56
3	Summary QA/QC Criteria for Total Organics - Nonvolatile Organics	J-56
4	Summary QA/QC Criteria for VOCs -SMVOC (0031 and 5041 A)	J-57
5	Summary QA/QC Criteria for Sermivolatile Organics -SVOST (0010 and	J-58
5A	Summary QA/QC Criteria for Semivolatile Organics - SVOST (0010 and	J-59
6	Summary QA/QC Criteria for Metals (601013)	J-60
7	Summary QA/QC Criteria for Mercury (7470A)	J-61
8	Summary of QC and Calibration Criterion -SW 846 Method 6020 (Metals by	
	ICP/MS)	J-62
9	Summary QA/QC Criteria for Dioxin (0023A)	J-63
10	Summary QA/QC Criteria for Chloride/Fluoride (9057)	J-64
11	Volatile Organics	J-65
12	Control Limits for SW 846 Method 826013- GUMS For Volatile Organics	J-66
13	Summary QC and Calibration Criterion - SW 846 Method 8270C GUMS for	
	Semi-Volatile Organics	J-67
14	Historical Control Limits for Method 8270C - GUMS for Semi-Volatile	J-68
15	Summary QC and Calibration Criterion - SW 846 Method 601013, TCLP	J-69
16	Methods: ICP Metals Control Limits for SW 846 601013, TCLP, and 3500 Series Methods: ICP	J-09 J-70
	Summary QC and Calibration Criterion - SW 846 Methods 7470A and TCLP	3-70
17	Mercury by Cold Vapor	J-71
18	Summary of QA/QC Criteria for Dioxins by Method 8290	J-72
19	Analytical Methods	J-73
20	Target Analyte List for Analysis of Exhaust Gas Samples for VOCs by	1 74
	Method 5041 A	J-74
21	Target Analyte List for Analysis of Exhaust Gas Samples for SVOCs by Method 8270C	J-75
22	Summary QA/QC Criteria for COD (410)	J-76
23	Summary QA/QC Criteria for Reactive Cyanide (9014)	J-76
24	Summary QA/QC Criteria for Reactive Sulfide (9034)	J-77
25	Summary QA/QC Criteria for TCLP Pesticides (8081 A)	J-77
26	Summary QA/QC Criteria for TCLP Herbicides (8151 A)	J-78
27	Method 6020 Practical Quantitation Limits	J-79
28	Method 7470a Practical Quantitation Limits	J-80
28	Method 7470a Practical Quantitation Limits	J-81
29	ICPMS 6020 Practical Quantitation Limits	J-82
30	Method 7470a Cold Vapor Practical Quantitation Limits	J-84

31	Method 6020 Tclp Sclp Practical Quantitation Limits	J-85
32	Method 7470a Cold Vapor Practical Quantitation Limits	J-86
	Method 8270c Air Matrix Practical Quantitation Limits	J-87
J 4	Method 8270c Water Matrix Practical Quantitation Limits	J-91
35	Method 9057 Practical Quantitation Limits	J-92
36	Method 9057 Mod, Ion Chromatography Pql	J-93
37	Method 9057 Ion Cromatography Practical Quantitation Limit	J-94
38	Method 0023a/8290 Practical Quantitation Limits	J-95
39	Method 8260b Practical Quantitation Limits	J-96
40	Method TCO Practical Quantitation Limits	J-97
41	Method Gray Practical Quantitation Limit	1_08

Table 1 - Summary QA/QC Criteria for Volatile Total Organic Compounds C₁ to C₈ Tedlar Bag Analysis

			
Quality Parameter	Method/Frequency	Criteria	Corrective Action
Field Blanks	1 per trial burn	< 5% x PQL ⁽¹⁾	Clean System. Recollect Sample. Reanalyze
Trip Blank	1 per run	< 5% x PQL	Determine contamination source, reanalyze.
Laboratory Blank*	2 per trial burn, analyzed as required	< 5% x PQL	Determine contamination source, reanalyze.
Initial Calibration	3 levels in duplicate	r > 0.995**	Recalibrate.
Continuing Calibration	RRT and RRF	± 10%	Reanalyze. Recalibrate and reanalyze affected samples.
Laboratory Control Sample (LCS), Accuracy	1 per day	80 - 120%	Check system, reanalyze. Recalibrate.
LCS, Precision	1 per day	± 20% RPD	Check system and reanalyze.
Field Control Sample (FCS), Accuracy	1 per trial burn	50 - 150%	Check system and reanalyze.
FCS, Precision	1 per trial burn	± 50%	Check system and reanalyze.
Field Spike, Accuracy	1 per trial burn	80 - 120%	Check system and reanalyze.
Field Spike, Precision	1 per trial burn	± 20% RPD	Check system and reanalyze.
PQL	Each Range	0.25 ppmv	
Holding Times	Tedlar Bag	2 hours	

C₅ to C₈ Purge & Trap Analysis

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Method Blank	1 per analytical batch	< PQL	Reanalyze. Assess impact on data. Narrate.
Initial Calibration	C ₅ to C ₈ , 3 point injected in duplicate	RSD < 20%	Recalibrate.
Continuing Calibration	RRT RRF	15% ≤ 3 sd	Recalibrate and reanalyze affected samples.
Precision/Accuracy	LCS Duplicate	40 - 120% RPD 50%	Reanalyze. Assess impact on data. Narrate.
Holding Times		14 days	

^{4 (1)} Practical Quantitation Limits (PQLs) for Gravimetric Methods are listed as Reporting Limits (RLs) in Table 41 of this Attachment.

10 11

6 7

^{*} Laboratory blank is analyzed only if the field and trip blanks fail criteria.

^{**} This criteria is a goal only since no criteria is specified in the method.

sd standard deviation

NOTE: The compounds will be summed up to and including Octane. All compounds with retention times $< C_5$ will be reported and quantitated as C_5 .

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Field Blanks	1 per trial burn	< 5% of lowest sample	Reanalyze. Narrate.
Lab Blanks	1 per analytical batch	< Reporting limit	Reanalyze. Assess impact on data. Narrate.
Initial Calibration	C10, C12, and C14	RSD of RRF ≤ 20%	Recalibrate.
Continuing Calibration	RRT and RRF	± 15%	Recalibrate and reanalyze affected samples.
Precision and Accuracy	LCS	40 - 120%	Reanalyze. Assess impact on data. Narrate.
	Duplicates	± 50% RPD	Reanalyze. Assess impact on data. Narrate.
Verification	LCS	Different Source/Lot	Check system and reanalyze.
Holding Time		14 Days	

⁽¹⁾ Reporting Limits for Method 8270C Methods are listed in Tables 33 and 34 of this Attachment.

Table 3 - Summary QA/QC Criteria for Total Organics - Nonvolatile Organics

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Field Blanks	1 per run	< 5% of lowest sample	Reanalyze. Narrate.
Lab Blanks	1 per analytical batch	< Reporting limit	Reanalyze. Assess impact on data. Narrate
Initial Calibration	Balance Calibration - Certified Stds	± 2%	Check system and reanalyze.
Precision and Accuracy	LCS	85% to 115%	Reanalyze. Assess impact on data. Narrate
Accuracy	Duplicates	± 20% RPD	Reanalyze. Assess impact on data. Narrate
Verification	Balance	Class S Weights	Check system and reanalyze.
Holding Time		14 Days	

⁽¹⁾ Reporting Limits for Grav Method are listed in Table 41 of this Attachment.

Table 4 - Summary QA/QC Criteria for Volatile Organic Compounds SMVOC (0031 and 5041A)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	Surrogates	50% - 150%	Correct problem, Narrate.
Field Blanks	1 per five pairs	< Lowest Standard	Report and narrate.
Trip Blanks	1 per shipment	< Lowest Standard	Report and narrate.
Lab Blanks	1 per analytical batch	< Lowest Standard	Correct problem, reanalyze.
	Five Levels, as per target list	RRF 30%	Correct problem, reanalyze.
Initial Calibration	SPCC RRF	>0.1 Chloromethane 1,1-Dichloroethane Bromoform >0.3 Chlorobenzene 1,1,2,2- Tetrachloroethane	Correct problem, reanalyze.
	CCC plus selected POHCs	<15% RSD for POHCs <30% RSD for other CCC compounds	Correct problem, reanalyze.
	Midpoint Standard - Every 12 Hours	N/A	
Continuing Calibration	SPCC RRF	Same as Initial	Correct problem, reanalyze.
	CCC plus selected POHCs	± 20% Diff	Correct problem, reanalyze.
Consistency in	Internal Standard RRT	± 30 Seconds	Correct problem, Narrate.
Chromatography	Internal Standards	-50% to 150%	Correct problem, Narrate.
Precision and Accuracy	2 Fortified Blanks per batch	75% - 125% REC ± 25% RPD	Correct problem, reanalyze.
Continuing Accuracy Check	Surrogates	50% - 150%	Correct problem, Narrate.
Detection Limit	For Each Compound	Based on Lowest Standard	
VOST Audit Sample	Once per TB	50% - 150%	Report, assess impact on data.
VOST Condensate	MS/MSD	50 - 150% Rec. <35% RSD	Report, assess impact on data.
Breakthrough Determination	Separate analysis of pairs	<30% on T/C	
Holding Time		14 Days	

⁽¹⁾ Reporting Limits for Total Chromatographable Organics (TCO) are listed in Table 40 of this Attachment.

Table 5 - Summary QA/QC Criteria for Semivolatile Organics **SVOST (0010 and 8270C)**

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Method Blank	1 per analytical batch	< PQL (1) (2)	Reanalyze. Assess impact on data. Narrate.
Field Blank	1 per trial burn	< PQL	Reanalyze and/or narrate.
Trip Blank	1 per trial burn	< PQL	Reanalyze and/or narrate.
Instrument Tune	Every 12 hours, initially and as required.	As per 8270C	Retune instrument. Repeat DFTPP analysis.
	SPCC RRF	> 0.050	Evaluate system.
Initial Calibration	ccc	RSD ≤ 30%	Recalibrate.
Five point	Other Compounds <15% RSD	Average RF	
	Other Compounds <15% RSD	Linear Curve	
Continuing	SPCC RRF	Same as Initial	Evaluate system. Repeat calibration check.
Calibration	ccc	RSD ≤ 20%	Recalibrate. Reanalyze affected samples.
Internal Standards	RRT	± 30 seconds	Check sensitivity of system.
	Accuracy	50 - 200%	
	LCS per batch	Historical lab data, see Tables	Check calculations. Reanalyze. Assess impact on data. Narrate.
Precision and Accuracy	Duplicate LCS	Historical lab data, see Tables	Check calculations. Reanalyze. Assess impact on data. Narrate.
	Surrogates	Historical lab data, see Tables	Check calculations. Reanalyze. Assess impact on data. Narrate.
PQL	Standard Compounds	10 μg/fraction	
Audit Sample	As Supplied	As Supplied	
Holding Time		7 Day Extraction 40 Day Analysis	

The term PQL refers to the laboratory's standard Reporting Limit (RL). These are provided for (1) Method 8270 in Tables 33 and 34 of this Attachment.

Except for common lab contaminants: Phthalate esters may be reported with qualifiers if the (2) concentration of the analyte is less than five times the PQL. Such action must be addressed in the case narrative.

Table 5A - Summary QA/QC Criteria for Semivolatile Organics SVOST (0010 and 8270C)

HISTORICAL CONTROL LIMITS

	COMPOUND	ACCURACY	PRECISION
DCS/LCS			
	Phenol	47-108	18
	2-Chlorophenol	47-113	20
	1,4-Dichlorobenzene	42-114	22
	N-nitrosodi-n-propylamine	46-107	15
	1,2,4-Trichlorobenzene	45-118	16
	4-Chloro-3-methylphenol	55-118	13
	Acenaphthene	54-119	10
	4-Nitrophenol	43-166	17
	2,4-Dinitrotoluene	59-113	10
	Pentachlorophenol	59-128	10
	Pyrene	45-140	11
Surrogates			
	Nitrobenzene-d5	45-107	N/A
	2-Fluorobiphenyl	62-110	N/A
	Terphenyl-d14	58-135	N/A
	Phenol-d5	43-130	N/A
	2-Fluorophenol	36-111	N/A
	2,4,6-Tribromophenol	58-131	N/A

DCS Duplicate Control Samples

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Test Plan 05-74 5 February 2004

Table 6 - Summary QA/QC Criteria for Metals (6010B)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	LCS	80% - 120%	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate.
Field Blanks	1 per TB	< Reporting limit ⁽¹⁾	
Lab Blanks	Calibration Blank Method Blank	< Reporting limit	Reanalyze. Reextract and reanalyze as necessary, including affected samples.
Initial Calibration	Calibration Blank + one Standard	Linear CC of ≥ 0.995	Evaluate system and recalibrate.
initial Calibration	ICV	90% - 110%	Reanalyze ICV. Recalibrate.
Continuing Calibration	Midpoint Standard - Every 10 samples	90 - 110%	Reanalyze CCV. Recalibrate. Reanalyze affected samples.
Precision and	1 LCS per batch	80% - 120%	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate.
Accuracy	MS/MSD per Batch	75% - 125% Rec	Check calculations. Assess impact on data and narrate.
	Post Digestion Spike	75% - 125% Rec	
Continuing Accuracy	Interference Check- Before and After	80% - 120% Rec	Reanalyze. Recalibrate. Reanalyze affected samples.
Check	Continuing Calibration Verification CCV	90% - 110%	Reanalyze CCV. Recalibrate. Reanalyze affected samples.
Verification	ICV	Different Source/Lot	
Spiked Filter	One per TB	75% - 125% REC	Check calculations. Assess impact on data and narrate.
Detection Limit		SW-846 Chap 1	
Holding Time		180 Days	

⁽¹⁾ Reporting Limits for Method 7470A are listed in Tables 30 and 32 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 7 - Summary QA/QC Criteria for Mercury (7470A)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	LCS	80% - 120%	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate.
Field Blanks	1 per TB	< Reporting limit ⁽¹⁾	
Lab Blanks	Calibration Blank Method Blank	<reporting limit<="" td=""><td>Reanalyze. Reextract and reanalyze as necessary, including affected samples.</td></reporting>	Reanalyze. Reextract and reanalyze as necessary, including affected samples.
Initial Calibration	Calibration Blank + Five Standards	r > 0.995	Evaluate system and recalibrate.
Continuing Calibration	Midpoint Standard - Every 10 samples	± 20%	Reanalyze. Recalibrate. Reanalyze affected samples.
Precision and Accuracy	1 LCS per batch	80% - 120%	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate.
,	MS/MSD per Batch	70% - 130% Rec ± 25% RPD	Check calculations. Assess impact on data and narrate.
Continuing Accuracy Check	Instrument Calibration Verification ICV	80% - 120%	Reanalyze ICV. Recalibrate.
Verification	ICV	Different Source/Lot	
Detection Limit		0.0002 mg/L	
Holding Time		28 Days	

⁽¹⁾ Reporting Limits (RLs) for Method 7470A are listed as in Tables 30 and 32 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will as applicable.

8

Table 8 - Summary of Quality Control and Calibration Criterion SW 846 Method 6020 (Metals by ICP/MS)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Instrument Tune	Daily, prior to calibration and sample analysis	Mass resolution < 1.0 amu @ 10% peak height and mass calibration ± 0.1 amu from expected value.	Retune instrument. Repeat tune solution and analysis.
Initial Calibration	Laboratory mixed standard calibration	r ≥ 0.995	Evaluate and reanalyze ICV. Recalibrate
Calibration Blank	After initial calibration and each continuing calibration	< Reporting limit ⁽¹⁾	Clean system. Rerun. Reanalyze affected samples.
Initial Calibration Verification (ICV)	After calibration	90% - 110%	Evaluate and reanalyze ICV. Recalibrate
Continuing Calibration Verification (CCV)	Every ten samples end of run	90% - 110%	Reanalyze CCV. Recalibrate. Reanalyze samples.
Continuing Calibration Blank (CCB)	With continuing calibration	< Reporting limit	Reanalyze CCB. Recalibrate. Reanalyze samples
Internal Standards	accuracy/ all blanks and standards. accuracy / all samples.	≤ 20% of initial calibration 30% - 120%	Reanalyze and/or narrate.
Method Blank	Each batch	< Reporting limit	Reanalyze. Re-prepare samples.
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	Each matrix	75% to 125% 25% RPD	Check calculations. Reanalyze. Assess impact on data.
Duplicate Injection	1 per analytical batch	25% RPD	Check calculations. Reanalyze. Assess impact on data.
Laboratory Control Samples (LCS)	Each batch	75% - 125% 25% RPD	Check calculations. Reanalyze. Assess impact on data.
Holding time		180 Days	

⁽¹⁾ Reporting limits, or PQLs, for Method 6020 are provided in Tables 27 and 31 for Method 6020. For air matrices, the QC samples per batch include a LCS only (no MS/MSD).

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	Laboratory Control Sample LCS	1 per batch	Review internal standards. Assess impact on data. Process archive sample if necessary.
Field Blanks	1 per TB	<5 times PQL ⁽¹⁾	Reanalyze and/or narrate.
Reagent Blanks	1 per analytical batch Method Blank	<5 times PQL	Reanalyze and/or narrate.
Lettel Celthortion	Five Levels		Evaluate system.
Initial Calibration	Targets	≤ 25% RSD	Recalibrate.
Continuing Calibration	Midpoint Standard - Every 12 Hours	± 25% RSD	Evaluate system. Reanalyze CCAL. Recalibrate as necessary. Reanalyze samples.
	Window/Valley Mix	25% Valley	Readjust windows. Evaluate system. Perform maintenance. Reanalyze WDM/CPSM.
Consistency in Chromatography	Internal Standard	RRT of ± 3 seconds 40% - 130%	Check chromatogram for interference. Check instrument and reanalyze if necessary. Check signalto-noise, if < 10:1 process archive sample. Assess impact on data and narrate.
Surrogate Precision and Accuracy	LCS per batch	70% - 130%	Check calculations. Review internal standards. Assess impact on data. Process archive sample if necessary.
Audit Samples	One per TB	70 - 130%	
Detection Limit	For each isomer	See 0023A	
Holding Time		30 Days Extraction 45 Day Analysis	

⁽¹⁾ Practical Quantitation Limits (PQLs) for Method 0023A are listed as Reporting Limits (RLs) in Table 38 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Test Plan 05-74 5 February 2004

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	LCS	80% - 120%	Recalibrate.
Field Blanks	1 per TB	< Reporting limit ⁽¹⁾	Narrate
Lab Blanks	Method Blank	< Reporting limit	Reanalyze. Assess impact on data. Narrate.
Initial Calibration	Four Levels	r > 0.995	Evaluate system.
Initial Calibration	RRT Window	± 3SD	Recalibrate.
	Midpoint Standard every 10 samples	90% - 110%	Evaluate system. Repeat calibration
Continuing Calibration	RRT	Within ± 3SD	check. Recalibrate. Reanalyze affected samples.
	LCS per batch	80% - 120% Rec	Check calculations. Reanalyze. Assess impact on data. Narrate.
Precision and Accuracy	MS per Batch (front and back)	90% - 110%	Check calculations. If RPD is in control, accept data and narrate. IF RPD is out of control, reanalyze.
	Duplicate per batch (front and back)	± 25% RPD	Reanalyze. Assess impact on data. Narrate.
Continuing Accuracy Check	Instrument Calibration Verification (CCV)	90% to 110%	Evaluate system. Repeat calibration check. Recalibrate. Reanalyze affected samples.
Verification	ICV	Different Source/Lot	Evaluate system. Recalibrate.
Holding Time		28 Days	

⁽¹⁾ Reporting Limits for Method 9057A are listed in Tables 35, 36, and 37 of this Attachment.

Table 11 - Summary Quality Control and Calibration Criterion SW 846 Method 8260B GC/MS for Volatile Organics

Quality Parameter	Method/ Frequency	Criteria	Corrective Action
Method Blank	1 per analytical batch	< PQL ^{(1) (2)}	Reanalyze. Assess impact on data. Narrate.
Instrument Tune	Every 12 hours	Refer to method.	Retune instrument. Repeat BFB analysis.
Initial Calibration, Five	SPCC RRF	0.10 Chloromethane 0.10 1,1 DCA > 0.10 Bromoform 0.30 Chlorobenzene 0.30 1,1,2,2 TCA	Evaluate system.
point	ccc	RSD ≤ 30%	Recalibrate.
	Other compounds: <15% RSD	Average RF	
	Other compounds: >15% RSD	Linear Curve	
	SPCC RRF	Same as initial	Evaluate system.
Continuing Calibration	ccc	< 20% drift	Repeat calibration check. Reanalyze affected samples.
	RRT	≤ 0.50 or 30 seconds	Check sensitivity of
Internal Standards	Recovery	50 - 200%	system. Reanalyze.
	LCS per batch	Historical lab data. See Table 12.	Check calculations. Reanalyze. Assess impact on data. Narrate.
Precision/ Accuracy	MS/MSD per batch	Historical lab data. See Table 12	Check calculations. Reanalyze. Assess impact on data.
	Surrogates	Historical lab data. See Table 12	Check calculations. Reanalyze. Assess impact on data.
Holding Time		14 days	

⁽¹⁾ Practical Quantitation Limits (PQLs) for Method 8260B are listed as Reporting Limits (RLs) in Table 39 of this Attachment.

5

⁽²⁾ Except for common lab contaminants: methylene chloride, acetone, and 2-butanone may be reported with qualifiers if the concentration of the analyte is less than five times the PQL. Such action must be addressed in the case narrative.

Table 12 - Control Limits for SW 846 Method 8260B⁽¹⁾ GC/MS for Volatile Organics

Historical Limits

	Compound	Accuracy	Precision
LCS			
	1,1-Dichloroethene	75-113	NA
	Benzene	78-116	NA
_	Trichloroethene	70-110	NA
	Toluene	78-126	NA
	Chlorobenzene	81-115	NA
MS/MS	SD		
	1,1-Dichloroethene	75-113	20
	Benzene	78-116	20
	Trichloroethene	70-110	20
	Toluene	78-126	20
	Chlorobenzene	81-115	20
Surro	gates		
	1,2-Dichoroethane-d4	76-114	N/A
	Toluene-d8	88-110	N/A
	4-Bromofluorobenzene	86-115	N/A

5 6

(1) Practical Quantitation Limits (PQLs) for Method 8260B are listed as Reporting Limits (RLs) in Table 39 of this Attachment.

7 8 9

(2) Except for common lab contaminants: methylene chloride, acetone, and 2-butanone may be reported with qualifiers if the concentration of the analyte is less than five times the PQL. Such action must be addressed in the case narrative.

10 11 12

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

14 15

4 5 6 7 8 9 10 11 12 13 14 15 16 17

18

Table 13 - Summary Quality Control and Calibration Criterion SW 846 Method 8270CGC/MS for Semi-Volatile Organics

Quality Parameter	Method/ Frequency	Criteria	Corrective Action
Method Blank	1 per analytical batch	< PQL ⁽¹⁾⁽²⁾	Reanalyze. Assess date, Narrate.
Instrument Tune	Every 12 hours, initially and as required	As per 8270C	Retune instrument. Repeat DFTPP analysis.
	SPCC RRF	. ≥ 0.050	
	CCC	RSD ≤ 30%	
Initial Calibration, Five point	Other compounds: <15% RSD	Average RF	Evaluate system. Recalibrate.
	Other compounds: >15% RSD	Linear Curve	
	SPCC RRF	Same as initial	Evaluate system.
Continuing Calibration	ccc	RSD _. ≤ 20%	Repeat calibration check. Recalibrate. Reanalyze affected samples.
Internal Standards	RRT	+ 30 seconds	Check sensitivity of
Internal Standards	Accuracy	50 - 200%	system. Reanalyze
	LCS per batch	Historical lab data. See Table 14	Check calculations. Reanalyze. Assess data, Narrate.
Precision/ Accuracy	MS/MSD per batch.	Historical lab data. See Table 14	Check calculations. Reanalyze. Assess data, Narrate.
	Surrogates	Historical lab data. See Table 14	Check calculations. Reanalyze. Assess data, Narrate.
Holding Time		Extraction - 14 days Analysis - 40 days	

⁽¹⁾ Practical Quantitation Limits (PQLs) for Method 8270C are listed as Reporting Limits (RLs) in Tables 33 and 34 of this Attachment.

⁽²⁾ Except for common lab contaminants: Phthalate esters may be reported with qualifiers if the concentration of the analyte is less than five times the PQL. Such action must be addressed in the case narrative

Table 14 - Historical Control Limits for Method 8270C GC/MS for Semi-Volatile Organics

		Accuracy		Accuracy	· · · · · · · · · · · · · · · · · · ·
	Compound	Aqueous	Compound	Aqueous	RPD
LCS			MS/MSD		
	Phenol	20-49	Phenol	20-49	21
	2-Chlorophenol	57-102	2-Chlorophenol	57-102	23
	1,4-Dichlorobenzene	50-98	1,4-Dichlorobenzene	50-98	19
	N-nitrosodi-n-propylamine	51-108	N-nitrosodi-n-propylamine	51-108	20
	1,2,4-Trichlorobenzene	51-102	1,2,4-Trichlorobenzene	51-102	19
	4-Chloro-3-methylphenol	59-118	4-Chloro-3-methylphenol	59-118	17
	Acenaphthene	62-111	Acenaphthene	62-111	16
	4-Nitrophenol	10-68	4-Nitrophenol	10-68	37
	2,4-Dinitrotoluene	51-116	2,4-Dinitrotoluene	51-116	15
	Pentachiorophenol	35-128	Pentachlorophenol	35-128	26
	Pyrene	56-137	Pyrene	56-137	23
Surro	gates				
	Nitrobenzene-d5	49-112			
	2-Fluorobiphenyl	49-106			
	Terphenyl-d14	53-124			
	Phenol-d5	17-51			
	2-Fluorophenol	21-89			
	2,4,6-Tribromophenol	54-114			

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 15 - Summary Quality Control and Calibration Criterion SW 846 Method 6010B, TCLP Methods: ICP Metals

Quality Parameter	Method/ Frequency	Criteria	Corrective Action
Initial Calibration	Calibration blank + one standard. Daily prior to analysis	± 5% RSD	Evaluate system and recalibrate
Calibration Blank	After initial calibration and each calibration	< PQL ⁽¹⁾	Evaluate system and recalibrate
ICP Interference Check	Run at beginning of daily run; after 8 hours and/or end of run	80-120%	Reanalyze. Recalibrate. Reanalyze affected samples.
Initial Calibration Verification (ICV)	After calibration	±10% of expected response	Evaluate system and recalibrate
Continuing Calibration Verification (CCV)	Every 10 samples and end of run sequence	±10% of expected response	Reanalyze CCV. Recalibrate. Reanalyze affected samples.
Method Blank	1 per analytical batch	< PQL	Reanalyze. Reextract and reanalyze as necessary, including affected samples
LCS ²	1 per analytical batch	Historical lab data. See Table 16	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate.
MS/MSD ²	1 per analytical batch.	See Table 16	Check calculations. Assess impact on data and narrate.
Holding Time		180 days to analysis.	

⁽¹⁾ Practical Quantitation Limits (PQLs) for Method 6010B are listed as Control Limits in Table 16 of this Attachment. For Method 7470A, the PQLs are provided in Tables 28, 30, and 32.

⁽²⁾ The QC batching for aqueous and TCLP matrices includes an LCS and MS/MSD.

Historical Limits

	Compound	Accuracy Aqueous	Accuracy TCLP	Precision
LCS	Aluminum	88-119	88-119	NA
	Antimony	89-110	89-110	NA
	Arsenic	88-109	88-109	NA
	Barium	89-110	89-110	NA
	Beryllium	86-110	86-110	NA
	Boron	83-106	83-106	NA
	Cadmium	90-110	90-110	NA
	Chromium	86-113	86-113	NA
	Cobalt	87-119	87-119	NA
	Copper	91-111	91-111	NA
	Lead	87-117	87-117	NA
	Manganese	89-116	89-116	NA
	Nickel	90-112	90-112	NA
	Selenium	87-112	87-112	NA
	Silver	91-112	91-112	NA
	Thallium	90-117	90-117	NA
	Tin	85-110	85-110	NA
	Vanadium	87-119	87-119	NA
	Zinc	90-114	90-114	NA
MS/MSD				
	Aluminum	88-119	88-119	13
	Antimony	89-110	89-110	10
	Arsenic	88-109	88-109	10
	Barium	89-110	89-110	11
	Beryllium	86-110	86-110	13
	Boron	83-106	83-106	11
	Cadmium	90-110	90-110	11
	Chromium	86-113	86-113	11
	Cobalt	87-119	87-119	11
	Copper	91-111	91-111	10
	Lead	87-117	87-117	14
	Manganese	89-116	89-116	12
	Nickel	90-112	90-112	10
	Selenium	87-112	87-112	10
	Silver	91-112	91-112	10
	Thallium	90-117	90-117	11
	Tin	85-110	85-110	11
	Vanadium	87-119	87-119	11
	Zinc	90-114	90-114	10

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory

performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 17 - Summary Quality Control and Calibration Criterion SW 846 Methods 7470A and TCLP Mercury by Cold Vapor

Quality Parameter	Method/ Frequency	Criteria	Corrective Action
Initial Calibration	Blank and five standards. Daily before analysis	Correlation Coefficient ≥ 0.995	Evaluate system and recalibrate.
Calibration Blank	After initial calibration and each calibration	< PQL ⁽¹⁾	Reanalyze. Recalibrate. Reanalyze affected samples.
Initial Calibration Verification (ICV)	After calibration	80-120%	Evaluate system and recalibrate
Continuing Calibration Verification (CCV)	Every 10 samples and end of run sequence	80-120%	Reanalyze. Recalibrate. Reanalyze affected samples.
Method Blank	1 per analytical batch	< PQL	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate
LCS	1 per analytical batch	76-117% (aqueous) 75-125% (TCLP)	Check calculations. Reextract and reanalyze as necessary. Assess data and narrate.
MS/MSD	1 per analytical batch (20 samples).	76-117% (aqueous) 75-125% (TCLP)	Check calculations. Assess impact on data and narrate.
Practical Quantitation Limit	Multiple Metals Train Aqueous Samples Solid Samples	0.2 μg/fraction 0.0002 mg/L 0.1 mg/Kg	
Holding Time		28 days to analysis.	

(1) Practical Quantitation Limits (PQLs) for Method 7470A are listed as Reporting Limits (RLs) in Tables 28, 30, and 32 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 18. Summary of QA/QC Criteria for Dioxins by Method 8290

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Initial Calibration	Five point calibration initially and as required	Int Std RSD ≤ 30% Natives RSD ≤ 20%	Evaluate system. Recalibrate.
Continuing Calibration	Midpoint standard at start of each 12 hour sequence	%D of IS ≤ 30% from avg RRF (ICAL); %D of natives ≤ 20% from avg RRF (ICAL).	Evaluate system. Reanalyze CCAL. Recalibrate as necessary. Reanalyze samples.
Window Defining Mix (WDM) Column Performance Check Solution	Prior to ICAL, once per 12 hours prior to sample analysis	Used to set retention times. CPSM must have <25% valley resolution for 2,3,7,8-TCDD	Readjust windows. Evaluate system. Perform maintenance. Reanalyze WDM/CPSM.
Initial Calibration Blank (ICB) Continuing Calibration Blank (CCB)	With initial and continuing calibration	< PQL ⁽¹⁾	Evaluate system. Reanalyze. Recalibrate as necessary. Reanalyze samples.
Method Blanks	1 per analytical batch	< PQL	Reanalyze. Re- prepare samples.
Internal Standards	Every sample	40 - 135% for tetra and hexa isomers; 25 - 150% for Hepta and octa isomers.	Check chromatogram for interference. Check instrument and reanalyze if necessary. Check signal-to-noise, if < 10:1 process archive sample. Assess impact on data and narrate
LCS	1 per analytical batch	60 - 140% for target analytes	Check calculations. Reanalyze. Assess impact on data. Narrate.
MS/MSD	1 per agent trial burn	60 - 140% recovery for target analytes; RPD ≤ 20%	Check calculations. Reanalyze. Assess impact on data.
Holding Time		30 days extraction 45 days analysis	

⁽¹⁾ Practical Quantitation Limits (PQLs) for Method 8290 are listed as Reporting Limits (RLs) in Table 38 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 19 - Analytical Methods

PARAMETER	MATRIX	PREPARATION METHOD	ANALYSIS METHOD
VOCs	Tenax [™] and Anasorb [™] -747	5041A	5041A
SVOCs	XAD-2 [™] /filter/cond./rinses	0010	8270C
PCDDs/PCDFs	XAD-2 [™] /filter/rinses	0023A	0023A
Volatile TOC	Bag/Condensate	0040/5030A	GC/FID
Semi-Volatile TOC	XAD-2 [™] /filter/cond.rinses	0010	GC/FID
Non-Volatile TOC	XAD-2 [™] /filter/cond./rinses	None	Gravimetrically
VOCs	SMVOC condensate	5030B	8260B
TCLP SVOCs	Brine/residue	1311/3510C/3540C	8270C
HRA Metals	Brine	3010A/3050B	6010B/7470A
TCLP Metals	Brine/residue	1311/3010A/7470A	6010B/7470A
TCLP VOCs	Brine/residue	1311/5030B	8260B
HF, HCI/CI₂	Impinger Solutions/rinse	9057	9057
HRA Metals	Filter/Impinge solution/rinse	0060	6020/7470A
Particulate Matter (PM)	Filter/rinse	Method 5i	Method 5i

5 6

Table 20 - Target Analyte List for Analysis of Exhaust Gas Samples for Volatile Organic Compounds (VOCs) by Method 5041A

Acetone	1,2-Dichloropropane
Benzene	cis-1,3-Dichloropropene
Bromodichloromethane	trans-1,3-Dichloropropene
Bromoethene (Vinyl Bromide) ^a	Ethylbenzene
Bromoform	n-Hexane ^a
Bromomethane	2-Hexanone
2-Butanone	lodomethane
1,3-Butadiene ^a	Methylene chloride
Carbon disulfide	4-Methyl-2-pentanone
Carbon tetrachloride	2-Propanol
Chlorobenzene	Styrene
Chlorodibromomethane	1,1,1,2-Tetrachloroethane
Chloroethane	1,1,2,2-Tetrachloroethane
Chloroform	Tetrachloroethene
Chloromethane	1,1,2-Trichloro-1,2,2-trifluoroethane ^a
2-Chloropropane ^a	Toluene
1,2-Dibromoethane	1,1,1-Trichloroethane
Dibromomethane	1,1,2-Trichloroethane
trans-1,4-Dichloro-2-butene	Trichloroethene
cis-1,1-Dichloro-2-butene	
Dichlorodifluoromethane	1,2,3-Trichloropropane
1,1-Dichloroethane	Trichlorofluoromethane
1,2-Dichloroethane	Vinyl acetate ^a
1,1-Dichloroethene	Vinyl chloride
trans-1,2-Dichloroethene	Xylenes (total)

^a Response factor is obtained from a single analysis of the standard for this compound analyzed at a minimum of once per year. No method detection limit study or demonstration of capability are required.

Table 21 - Target Analyte List for Analysis of Exhaust Gas Samples for Semivolatile Organic Compounds (SVOCs) by Method 8270C

Acenaphthene	1,3-Dichlorobenzene	4-Methylphenol
Acenaphthylene	1,4-Dichlorobenzene	Pentachloroethane
Acetophenone	3,3'-Dichlorobenzidine	Naphthalene
2-Acetylaminofluorene	2,4-Dichlorophenol	1,4-Naphthoquinone
4-Aminobyphenyl	2,6-Dichlorophenol	1-Naphthylamine
3-Amino-9-ethylcarbozole ^a	Diethyl phthalate	2-Naphthylamine
Aniline	Dihydrosaffrole ^a	5-Nitroacenaphthene ^a
Anthracene	Dimethylaminoazobenzene	2-Nitroaniline
Aramite	7,12-Dimethylbenz(a)anthracene	3-Nitroaniline
Benzidine ^a	3,3'-Dimethylbenzidine	4-Nitroaniline
Benzoic acid ^b	∝,∝-Dimethylphenethylamine	Nitrobenzene
Benz(a)anthracene	2,4-Dimethyl phenol	2-Nitrophenol
Benzo(b)fluoroanthene	Dimethyl phthalate	4-Nitrophenol
Benzo(j)fluoroanthene ^a	1,3-Dinitrobenzene	5-Nitro-o-toluidine
Benzo(k)fluoroanthene	4,6-Dinitro-2-methylphenol	4 Nitroquinoline-1-oxide ^b
Benzo(g,h,i)perylene	2,4-Dinitrophenol ^d	N-Nitrosodibutylamine
Benzo(a)pyrene	2,4-Dinitrotoluene	N-Nitrosodiethylamine
Benzo(e)pyrene ^a	2,6-Dinitrotoluene	N-Nitrosodimethylamine
Benzyl alcohol	Dioxathion ^a	N-Nitrosomethylethylamine
Benzaldedhyde ^a	Diphenylamine	N-Nitrosodiphenylamine ^d
Benzenthiol ^a	1,2-Diphenylhydrazine ^a	N-Nitroso-di-n-propylamine
Biphenyl ^c	Di-n-octyl phthalate	N-Nitrosomorpholine ^a
Bis(2-chloroethoxy)methane	Ethyl methanesulfonate	N-Nitrosopiperidine
Bis(2-chloroethyl)ether	Ethyl parathion	N-Nitrosophyrrolidine
Bis(2-chloroisopropyl)ether	Fluoroanthene	Pentachlorobenzene
Bis(2-ethylhexy)phthalate	Fluorene	Pentachloronitrobenzene
4-Bromophenyl phenyl ether	Heptachlor ^c	Pentachlorophenol
Butyl benzyl phthalate	Hexachlorobenzene	Phenacetin
2-sec-Butyl-4,6-dinitrophenol	Hexachlorobutadiene	Phenanthrene
4-Chloroaniline	Hexachlorocyclopentadiene	Phenol
Chlorobenzilate	Hexachloroethane	1,4-Phenylenediamine ^a
4-Chloro-3-methylphenol	Hexachlorophene ^c	2-Picoline
1-Chloronaphthalene ^a	Hexachloropropene	Pronamide
2-Chloronaphthalene	Indeno(1,2,3-cd)pyrene	Pyrene
2-Chlorophenol	Isophorone	Pyridine
4-Chlorophenyl phenyl ether	Isosafrole	Quinoline ^c
Chrysene	Methapyrilene ^a	Safrole ^a
4-4'-DDE ^a	Methoxyclor ^a	1,2,4,5-Tetrachlorobenzene
Diallate (cis or trans)	Methycyclohexane ^a	2,3,4,6-Tetrachlorophenol
Dibenz(a,j)acridine ^a	3-Methylcholanthrene	o-Toluidine ⁸
Dibenz(a,h)anthracene		
Dibenzofuran	Methyl methanesulfonate	p-Toluidine
4000 0 11	Methyl methanesulfonate 2-Methylnaphthalene	p-Toluidine 1,2,4-Trichlorobenzene
1,2-Dibromo-3-chloropropane ^a	Methyl methanesulfonate	1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol
Di-n-butyl phthalate	Methyl methanesulfonate 2-Methylnaphthalene 2-Methyl-5-nitroaniline ^a 2-Methylphenol	1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol
	Methyl methanesulfonate 2-Methylnaphthalene 2-Methyl-5-nitroaniline ^a	1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol

^a No method detection limit study or demonstration of capability required

Response factor is derived from a 4-point calibration curve

Response factor is based on historical data

N-Nitrosodiphenylamine decomposes to diphenylamine. Laboratory quantifies as diphenylamine.

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	LCS	80% - 120%	Check calculations. Reanalyze. Assess impact on data. Narrate
Lab Blanks	Method Blank	< Reporting limit	Reanalyze. Re-prepare samples.
	LCS per batch	80% - 120% Rec	Check calculations. Reanalyze. Assess impact on data. Narrate
Precision and Accuracy	MS per batch	70% - 130%	Check calculations. Reanalyze. Assess impact on data. Narrate
	Duplicate per batch	± 30% RPD	Check calculations. Reanalyze. Assess impact on data. Narrate
Holding Time		28 Days	

Table 23 - Summary QA/QC Criteria for Reactive Cyanide (9014)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	LCS	80% - 120%	Check calculations. Reanalyze. Assess impact on data. Narrate
Lab Blanks	Method Blank	< Reporting limit	Reanalyze. Re-prepare samples.
Precision and	LCS per batch	80% - 120% Rec	Check calculations. Reanalyze. Assess impact on data. Narrate
Accuracy	Duplicate per batch	± 30% RPD	Check calculations. Reanalyze. Assess impact on data. Narrate
Holding Time		14 Days	Check calculations. Reanalyze. Assess impact on data. Narrate

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Demonstrated Ability	LCS	80% - 120%	Check calculations. Reanalyze. Assess impact on data. Narrate
Lab Blanks	Method Blank	< Reporting limit	Reanalyze. Re-prepare samples.
Precision and Accuracy	LCS per batch	80% - 120% Rec	Check calculations. Reanalyze. Assess impact on data. Narrate
	Duplicate per batch	Brine/water - TCLP leachate Brine/water - TCLP leachate ± 30% RPD	Check calculations. Reanalyze. Assess impact on data. Narrate
Holding Time		14 Days	

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 25 - Summary QA/QC Criteria for TCLP Pesticides (8081A)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Laboratory Blank	1 per preparation batch	< PQL ⁽¹⁾	Reanalyze. Re-prepare samples
Initial Calibration	5 point	%RSD ≤ 25%	Evaluate system. Recalibrate.
Continuing Calibration	every 12 hours	CF %D ± 15%	Evaluate system. Reanalyze CCAL. Recalibrate as necessary. Reanalyze samples.
Laboratory Control Sample (LCS), Accuracy	2 per preparation batch	70 - 130%	Check calculations. Reanalyze. Assess impact on data. Narrate
LCS, Precision	2 per preparation batch	± 30% RPD	Check calculations. Reanalyze. Assess impact on data. Narrate
Surrogates, Accuracy	Every Sample	60 - 150%	Check calculations. Reanalyze. Assess impact on data. Narrate
Holding Times		14 days to extract	

⁽¹⁾ Practical Quantitation Limits (PQLs) are listed as Reporting Limits (RLs) in Tables 27 to 41 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Table 26 - Summary QA/QC Criteria for TCLP Herbicides (8151A)

Quality Parameter	Method/Frequency	Criteria	Corrective Action
Laboratory Blank	1 per preparation batch	< PQL ⁽¹⁾	Reanalyze. Re-prepare samples
Initial Calibration	5 point	%RSD ≤ 25%	Evaluate system. Recalibrate.
Continuing Calibration	every 12 hours	CF %D ± 15%	Evaluate system. Reanalyze CCAL. Recalibrate as necessary. Reanalyze samples.
Laboratory Control Sample (LCS), Accuracy	2 per preparation batch	70 - 130%	Check calculations. Reanalyze. Assess impact on data. Narrate
LCS, Precision	2 per preparation batch	± 30% RPD	Check calculations. Reanalyze. Assess impact on data. Narrate
Surrogates, Accuracy	Every Sample	30 - 100%	Check calculations. Reanalyze. Assess impact on data. Narrate
Holding Times		14 days to extract	

⁽¹⁾ Practical Quantitation Limits (PQLs) are listed as Reporting Limits (RLs) in Tables 27 to 41 of this Attachment.

The SW-846 methods require that the laboratory establish recovery limits based on statistical analysis of actual samples and that the limits be updated over time (annually) to reflect actual laboratory performance. The most recent updated limits established by the laboratory will be used as applicable.

Page number 3

Practical in the 2017 of the Control

Structured Analysis Code: I-04-MH-01-07

Target Analyte List: SAC: MET 6020 ICPMS Ful! List

Matrix: WATER

Extraction: METALS, TOTAL RECOVERABLE

Method: Inductively Coupled Plasma Mass Spectrometry(6020)

OC Program: STANDARD TEST SET Location. STL Secremento

	Target List 20905		Detection	n Limits					Ct	wck Lis	1 20950)				Sp	ike List			
Syn	Compound	RL	Units	MDL.	Units	Run Date	T	A	Amt	Units	LCL	UCL	RPD	T	A	Amt	Units	LÇI	. UCL	RPD
38	Aluminum	0.05	mg/L	0.0021	mg/L	20000323	С	Υ	10	mg/L	88	119	13	С	Y	1.0	mg/L	88	119	13
128	Antimony	0.002	mg/L	0 000030	mg/L	20000323	С	Υ	0.05	mg/L	89	110	10	С	Y	0 05	mg/L	89	110	10
140	Arsenic	0.002	mg/L	0.00050	mgvL	20000323	С	Y	0.2	mg/L	88	109	10	С	Υ	0.2	mg/L	88	109	10
194	Bartim	0.001	mg/L	0.00096	mg/L	20000323	С	٧	0.2	mg/L	89	110	11	С	٧	0.2	mg/L	89	110	11
222	Beryllium	0.001	mg/L	0.000071	mg/L	20000323	С	Υ	0.2	mg/L	86	110	13	С	Υ	0.2	mg/L	86	110	13
313	Boron	0.05	mg/L	0.0063	mg/L	20000323		Y	1.0	mg/L	83	106	11		Y	1.0	mg/l.	83	106	11
111	Cadmium	0.001	mg/L	0.000074	mg/L	20000323	С	Y	62	mg/L	90	110	11	С	Y	0.2	mg/L	90	110	11
113	Calcium	0.05	mg/L	0.015	mg/L	20000323	С	Y	1.0	mg/l.	80	120	20	¢	Υ	1.0	nıg/L	50	120	20
3489	Cerium	0.005	mg/L	0.000048	mg/L	20020130		Υ	0.2	mg/L	80	120	20		Υ	0.2	mg/L	80	120	20
348B	Ceslum	0.005	mg/1.	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
2952	Chromium	0.002	mg/L	0.00092	mg/L	20000323	С	Υ	0.2	mg/L	86	113	11	Ċ	γ	0.2	mg/L	66	113	11
537	Cobalt	0.001	mg/L	0.00005	rng/L	20000323	С	٧	02	mg/L	87	119	11	Ç	Y	0.2	mg/L	87	119	11
643	Copper	0 002	mg/L	0.000058	mg/L	20000323	С	Y	0.2	mg/L	91	111	10	С	Y	0.2	mg/L	91	111	10
3911	Dysprosium	0.005	mg/L	0.001	mg/L	19990628		Y	02	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
3912	Erbium	0.005	mg∕t.	0 001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
3913	Europium	0.005	mg/L	0.001	mg/L	19990628		٧	0.2	mg/L	80	120	20		Y	02	mg/L	60	120	20
3914	Gadolinium	0.005	mg/L	0.001	mg/L	19990628		٧	0.2	mg/L	80	120	20		Y	02	mg/L	80	120	20
3915	Gellium	0.005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	80	120	20		٧	02	mg/L	80	120	20
3916		0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	50
1464	Gold	0.005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	60	120	20		Y	02	mg/L	80	120	20
3917		0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
3918		0.005	mg/L	0.001	mg/L	199 90 628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	90	120	20
3921		0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
1539	tron	0.05	mg/L	0.017	mg/L	20000323	С	Y	1.0	mg/L	90	120	12	C	Υ	1.0	mg/L	90	120	12
3922		0.005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	80	120	20			0.2	mg/L	80	120	20
1605	Lead	0.001	mg/L	0.000066	mg/L	20000323	С	γ	0.2	mg/L	87	117	14	С		0.2	mg/L	87		14
1616	Lithum	0.005	mg/L	0.00085	mg/L	20000323		γ	0.2	mg/L	80	120	20			0.2	mg/L	80	120	20
3923	Lutetium	0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20			0.2	mg/t.	80	120	50
1618	Magnesium	0.05	mg/L	0.00079	mg/L	20000323	¢		1.0	m₫∕Ľ	80	120	20			1.0	mg/L	80	120	20
1659		0.001	mg/L	0.000083	mg/L	20000323	С	Υ	0.2	mg/L	89	116	12	С		0.2	mg/L	89	116	12
1701	-	0,0002	mg/L	0 00003	mg/L	20000323		Υ	0.005	mg/L	80	120	20			0.005	mg/L	60	120	20
1906	Molybdenum	0.001	mg/L	0 00060	mg/L	20000323	¢	Y	0.2	mg/L	85	113	19	С		0.2	mg∕L	85	113	19
3490	Neodymium	0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20			0.5	mg/L	80	120	20
1956	•	0.002	mg/L	0.000090	mg/L	20000323	С	Y	0.2	mg/L	90	112	10	С	Y	0.2	mg/L	90	112	10
3924		0.005	m g/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20			02	mg/L	80	120	20
3925		0.005	mg/L	0.001	mg∕l.	19990628		Y	0.2	mg/L	80	120	20			0.2	mg/L	80	120	20
2200		0.05	mg/L	0.032	mg/L	19980430	C	Y	ŧ	mg/L	80	120	20	C	Υ	1	mg/L	80	120	20
2209	•	0.005	mg/L	0.001	mg/L	19990628		Y	0.5	աե⁄Ր	80	120	20			02	mg/L	90	120	20
2214		0.05	mg/L	0.0040	mg/L	20000323	С	Y	1.0	mg/L	80	120	20	С		1.0	mg/L	99		20
3926		0.005	mg/L	0.001	mg/L	19990628		Y	ი.2	mg/L	80	120	20			02	mg/L	30	120	20
3927	•	0,005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	BO	120	20		Υ	0.2	mg/L	80	150	20

Contact Comments of Contact

Matrur: WATER METALS, TOTAL RECOVERABLE Extraction. Structured Analysis Code: I-04-MH-01-07 Inductively Coupled Plasma Mass Spectrometry(6020) STANDARD TEST SET Method: Target Analyte List: SAC: MET 6020 ICPMS Full List QC Program: STL Sacramento Location:

Terget List 20905		Detectio	n Limits					CI	heck Lie	20966)				Sį	ike List:	20951	ŀ	
Compound	AL	Units	MDL	Units	Run Date	T	A	Amt	Unite	LCL	UCL	RPD	T	A	Amt	Units	LCI	L UCL	. RPD
Rhodium	0.005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	80	120	20		٧	0.2	mg/L	80	120	20
Rubidium	0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	90	120	20
Ruhenium	0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
Samarium	0.005	mg/t.	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
Scandium	0.00\$	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	60	120	20
Selenium	0.002	mg/L	0.0017	mg/L	20000323	C	Y	02	mg∕t.	87	112	10	С	Y	0.2	mg∕l.	87	112	10
Silver	0.001	mg/L	0.00003	mg/L	20000323	С	Y	0.05	mg/L	91	112	10	С	Y	0.05	mg/L	91	112	10
Socium	0.05	mg/L	0.011	mg/L	20000323	C	Y	1.0	mg/L	80	120	20	С	Y	10	mg/L	80	120	20
Strontium	0.005	mg/L	0.00028	mg/L	20000323		Υ	0.2	mg/L	80	120	20		Y	0.2	mg/L	BO	120	20
Tantalum	0 005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	02	mg/L	80	120	20
Tellurium	0 005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	80	120	20		۲	0.2	mg/L	80	120	20
Terbium	0.005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
Thaillum	0.001	mg/L	0.00034	mg/L	20000323	C	Y	0.05	mg/L	90	117	11	С	Y	0.05	mg/L	90	117	11
Thorium	0 005	mg/L	0.001	mg/L	19990628		Υ	0.2	mg/L	80	120	20		Υ	02	mg/L	80	120	20
Thukum	0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		۲	0.2	mg∕t.	60	120	20
Tin	0.01	mg/L	0.0014	mg/L	20000323	С	Y	0.2	mg/L	85	110	11	С	Y	0.2	mg/L	85	110	11
Titanium	0.002,	mg/L	0.00043	mg/L	20000323	С	Υ	0.2	mg/L	80	120	20	С	Y	0.2	mg/L	80	120	20
Tungsten	0.005	mg/L	0.001	mg/L	19990628		Y	0.2	mg/L	Ç8	120	20		Y	0.2	mg/L	80	120	20
Uransum	0.005	mg/L	0.00006	mg/L	20000323		Υ	0.2	mg/L	80	120	20		Υ	02	mg/L	90	120	20
Vanadium	0.01	mg/L	0.0031	mg/L	20000323	C	Y	0.2	mg/L	87	119	11	С	Y	0.2	mg/L	97	119	11
Ytterbium	0.005	mg∕L	0.001	mg/L	19990628		Y	0.2	mg/L	80	120	20		Y	0.2	mg/L	80	120	20
Yttrium	0.005	mg/L	0.001	mg/L	19990626		Y	0.2	mg/L	80	120	20		γ	0.2	mg/L	80	120	20
Zinc	0.005	mg/L	0.0010	mg/L	20000323	c	٧	0.2	mg/L	90	114	10	С	٧	0.2	mg/L	90	114	10
Zirconium	0.005	mg/L	0.001	mg/L	19980628		v	0.2	mod	BO.	120	20		¥	0.2	movi	80	120	20
	Compound Rhodum Rubidium Rubenium Samarium Scandium Scandium Silver Sodium Stronlium Tantalum Terbium Tholium Tholium Tholium Tin Titanium Tin Titanium Tungsten Urannum Vanadium Yitrium Zinc	Compound	Compound RL Units Rhodium 0.005 mg/L Rubidium 0.005 mg/L Ruthenlum 0.005 mg/L Samarium 0.005 mg/L Scandium 0.005 mg/L Selentium 0.002 mg/L Silver 0.001 mg/L Scrontium 0.005 mg/L Strontium 0.005 mg/L Tantalum 0.005 mg/L Terblum 0.005 mg/L Thalilum 0.005 mg/L Tholium 0.005 mg/L Thulum 0.005 mg/L Tin 0.01 mg/L Titanium 0.005 mg/L Tungsten 0.005 mg/L Uranum 0.005 mg/L Vanadium 0.005 mg/L Vitrium 0.005 mg/L	Compound RiL Units MDL	Compound RL Units MDL Units Rhodium 0.005 mg/L 0.001 mg/L Rubidium 0.005 mg/L 0.001 mg/L Rubinentum 0.005 mg/L 0.001 mg/L Samarium 0.005 mg/L 0.001 mg/L Scandium 0.005 mg/L 0.001 mg/L Selenium 0.002 mg/L 0.0017 mg/L Silver 0.001 mg/L 0.00002 mg/L Scodium 0.05 mg/L 0.00028 mg/L Strontium 0.005 mg/L 0.00028 mg/L Strontium 0.005 mg/L 0.001 mg/L Tallufum 0.005 mg/L 0.001 mg/L Terblum 0.005 mg/L 0.001 mg/L Thailum 0.001 mg/L 0.0034 mg/L Thuium 0.005 mg/L 0.001 mg/L <t< td=""><td>Compound RL Units MDL Units Run Date Rhodium 0.005 mg/L 0.001 mg/L 19990628 Rubidium 0.005 mg/L 0.001 mg/L 19990628 Ruthenlum 0.005 mg/L 0.001 mg/L 19990628 Samarium 0.005 mg/L 0.001 mg/L 19990628 Scandium 0.005 mg/L 0.001 mg/L 19990628 Selentium 0.002 mg/L 0.0017 mg/L 19000323 Silver 0.001 mg/L 0.00003 mg/L 20000323 Strontium 0.005 mg/L 0.0011 mg/L 20000323 Strontium 0.005 mg/L 0.001 mg/L 19990628 Tellufurm 0.005 mg/L 0.001 mg/L 19990628 Terblum 0.005 mg/L 0.001 mg/L 19990628 Tholium 0.005 mg/L 0.001</td><td> Compound RL Units MDL Units Run Date Thousand Rundium 0.005 mg/L 0.001 mg/L 19990628 Rubicium 0.005 mg/L 0.001 mg/L 19990628 Rubicium 0.005 mg/L 0.001 mg/L 19990628 Rubicium 0.005 mg/L 0.001 mg/L 19990628 Samarium 0.005 mg/L 0.001 mg/L 19990628 Scandium 0.005 mg/L 0.001 mg/L 19990628 Selenium 0.002 mg/L 0.0017 mg/L 20000323 C Silver 0.001 mg/L 0.00003 mg/L 20000323 C Silver 0.001 mg/L 0.00003 mg/L 20000323 C Sitronium 0.005 mg/L 0.0011 mg/L 20000323 C Sitronium 0.005 mg/L 0.0001 mg/L 19990628 T T T T T T T T T </td><td> Compound RL Umits MDL Units Run Data T A Rhodium 0.005 mg/L 0.001 mg/L 19990628 Y Rubidium 0.005 mg/L 0.001 mg/L 19990628 Y Rubinalium 0.005 mg/L 0.001 mg/L 19990628 Y Rubinalium 0.005 mg/L 0.001 mg/L 19990628 Y Samarium 0.005 mg/L 0.001 mg/L 19990628 Y Y Samarium 0.005 mg/L 0.001 mg/L 19990628 Y Y Salentium 0.005 mg/L 0.0017 mg/L 19990628 Y Y Salentium 0.002 mg/L 0.0017 mg/L 20000323 C Y Y Salentium 0.005 mg/L 0.00003 mg/L 20000323 C Y Y Y Y Y Y Y Y Y</td><td> Compound RL</td><td> Compound Ril</td><td> Compound RL Units MOL Units Run Date T A Amt Units LCL </td><td> Compound RL</td><td> Compound Ril</td><td> Compound RiL Units MDL Units Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R R R R R R R R R</td><td> Compound RL Units MIDL Units Run Data T A Amt Units LCL UCL RPD T A Rhodum 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Rubidium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Rubidium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Y Samarium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Y Y Y Y Y Y Y Y </td><td> Compound Ril Units MDL Units Run Data T A Amt Units LC Units Run Data T A Amt Units LC Units Run Data T A Amt Units LC Units Uni</td><td> Compound RL Umits MDL Units Run Date T A Amt Units LC LC RPD T A Amt Units Rindum 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Rubiciium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Rubiciium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Samarium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Samarium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Samarium 0.005 mg/L 0.0017 mg/L 20000323 C Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Silvar 0.001 mg/L 0.00003 mg/L 20000323 C Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Silvar 0.005 mg/L 0.00028 mg/L 20000323 C Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00028 mg/L 20000323 Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00028 mg/L 20000323 Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.0014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19</td><td> Compound RL Umits MDL Units Run Date T A Amt Units LCL UCL RPD T A Amt Units LCL RPD T A Amt Units RPD T A Amt RPD T A Amt Units RPD T T A A T T T T T T</td><td> Compound RL Umiks MDL Uniks Run Date T A Amt Uniks LCL UCL RPD T A Amt Uniks RPD T A Amt Uniks LCL UCL RPD T A Amt Uniks RPD T A A Amt Uniks RPD T A Amt T A A T A Amt T A A Amt T A Amt T</td></t<>	Compound RL Units MDL Units Run Date Rhodium 0.005 mg/L 0.001 mg/L 19990628 Rubidium 0.005 mg/L 0.001 mg/L 19990628 Ruthenlum 0.005 mg/L 0.001 mg/L 19990628 Samarium 0.005 mg/L 0.001 mg/L 19990628 Scandium 0.005 mg/L 0.001 mg/L 19990628 Selentium 0.002 mg/L 0.0017 mg/L 19000323 Silver 0.001 mg/L 0.00003 mg/L 20000323 Strontium 0.005 mg/L 0.0011 mg/L 20000323 Strontium 0.005 mg/L 0.001 mg/L 19990628 Tellufurm 0.005 mg/L 0.001 mg/L 19990628 Terblum 0.005 mg/L 0.001 mg/L 19990628 Tholium 0.005 mg/L 0.001	Compound RL Units MDL Units Run Date Thousand Rundium 0.005 mg/L 0.001 mg/L 19990628 Rubicium 0.005 mg/L 0.001 mg/L 19990628 Rubicium 0.005 mg/L 0.001 mg/L 19990628 Rubicium 0.005 mg/L 0.001 mg/L 19990628 Samarium 0.005 mg/L 0.001 mg/L 19990628 Scandium 0.005 mg/L 0.001 mg/L 19990628 Selenium 0.002 mg/L 0.0017 mg/L 20000323 C Silver 0.001 mg/L 0.00003 mg/L 20000323 C Silver 0.001 mg/L 0.00003 mg/L 20000323 C Sitronium 0.005 mg/L 0.0011 mg/L 20000323 C Sitronium 0.005 mg/L 0.0001 mg/L 19990628 T T T T T T T T T	Compound RL Umits MDL Units Run Data T A Rhodium 0.005 mg/L 0.001 mg/L 19990628 Y Rubidium 0.005 mg/L 0.001 mg/L 19990628 Y Rubinalium 0.005 mg/L 0.001 mg/L 19990628 Y Rubinalium 0.005 mg/L 0.001 mg/L 19990628 Y Samarium 0.005 mg/L 0.001 mg/L 19990628 Y Y Samarium 0.005 mg/L 0.001 mg/L 19990628 Y Y Salentium 0.005 mg/L 0.0017 mg/L 19990628 Y Y Salentium 0.002 mg/L 0.0017 mg/L 20000323 C Y Y Salentium 0.005 mg/L 0.00003 mg/L 20000323 C Y Y Y Y Y Y Y Y Y	Compound RL	Compound Ril	Compound RL Units MOL Units Run Date T A Amt Units LCL	Compound RL	Compound Ril	Compound RiL Units MDL Units Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R Run Data T A Arm Units LCL Units RPD T R R R R R R R R R	Compound RL Units MIDL Units Run Data T A Amt Units LCL UCL RPD T A Rhodum 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Rubidium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Rubidium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Y Samarium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y Y Y Y Y Y Y Y Y	Compound Ril Units MDL Units Run Data T A Amt Units LC Units Run Data T A Amt Units LC Units Run Data T A Amt Units LC Units Uni	Compound RL Umits MDL Units Run Date T A Amt Units LC LC RPD T A Amt Units Rindum 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Rubiciium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Rubiciium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Samarium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Samarium 0.005 mg/L 0.001 mg/L 19990628 Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Samarium 0.005 mg/L 0.0017 mg/L 20000323 C Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Silvar 0.001 mg/L 0.00003 mg/L 20000323 C Y 0.2 mg/L 80 120 20 Y 0.2 mg/L Silvar 0.005 mg/L 0.00028 mg/L 20000323 C Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00028 mg/L 20000323 Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00028 mg/L 20000323 Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.5 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.0014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19990628 Y 0.2 mg/L 80 120 20 C Y 0.2 mg/L Silvar 0.005 mg/L 0.00014 mg/L 19	Compound RL Umits MDL Units Run Date T A Amt Units LCL UCL RPD T A Amt Units LCL RPD T A Amt Units RPD T A Amt RPD T A Amt Units RPD T T A A T T T T T T	Compound RL Umiks MDL Uniks Run Date T A Amt Uniks LCL UCL RPD T A Amt Uniks RPD T A Amt Uniks LCL UCL RPD T A Amt Uniks RPD T A A Amt Uniks RPD T A Amt T A A T A Amt T A A Amt T A Amt T

(1) RL (Reportable Limit) is the PQL

Page number 4

Structured Analysis Code: I-19-08-01-07

Targot Analyte List: All Analytes

An agent of the service of the con-

Proposition 3

Matrix:	WATER

Extraction. METALS, TOTAL (Method exclusive) - Waters
Method: Mercury (7470A, Cold Vapor) - Liquid

QC Program.	STANDARD TEST SET
Location	otnomeroe2 IT2

	Analyte List		Detection	Limits					Ch	eck List 2	2098	2				Sp	ike List 2	10983			
Syn	Compound	RL	Units	MDL	Units	Run Date	T	A A	mt	Units	LC	LUC	L RPD	T	A	Amt	Units	LCL.	UCL	RPD	
1701	Mercury	0.0002	mg/L	0.000049	mg/L	19980619	C	Y 0.1	001	mg/L	76	117	7 19	С	Y	0.001	mg/L	79	119	20	

Structured Analysis Code: S-DF-MH-3V-07

Target Analyte List: SAC. MET 6020 ICPMS Full List

Matrix. AIR

Extraction. METALS, TOTAL Airwains, Back Half

Method Inductively Coupled Plasma Mass Spectrometry(60/20)
CC Program: EMISSIONS, STATIONARY SOURCES

Location. STL Secremento

	Target List 20905		Detectio	n Limits					CI	heck List	20950)				Sp	ike List :	20951		
Syn	Compound	RL	Units	MOL	Units	Run Dale	1		Amt	Units	LCL	. UCL	RPD	T	A	Amt	Units	LCL	. UCL	RPD
•	•			2.1		20000323	,	; Y	1000	ug	63	121	20	С	Υ	1000	ца	83	121	20
88	Aluminum	50	ug	0.036	ug	20000323	ò		50	ug	79	108	29	ċ	Ÿ	50	υg	79	108	29
128	Antimony	2.0	ug	0.50	ug	20000323		, ,		ug	79	107	20		Ÿ		ug	79	107	20
140	Arsenic	2.0	ug		ug	20000323	(200	ug	87	108	20	c	Ÿ	200	ug	87	108	20
194	Barium	1.0	υQ	0.96	ug	20000323		, T	200	•	73	108	20	Ç		200	ug	73	108	20
222	Beryllium	1.0	ug	0 078	ug	20000323	•	, τ		ug	73	120	22	•		1000	υg	73	120	22
313	Boron	10	υg	6.3	ug	20000323	,	, '		ug	81	106	20	c	Ÿ		пd	81	106	20
411	Cadmium	1.0	ug	0.074	υg			, T		ug	77	122	20		Ý		υg	77	122	20
413	Calcium	50	ug	15	ug	20000323	,	, T Y		ug	75	125	20	•	Ÿ	200	nd	75	125	20
3489	Cerium	5.0	ug	5.0	ug	19980609			200	ug	88	108	23		Ÿ	200	-	88	108	23
3488	Cesium	5.0	ug	5.0	ug	19980609		Y		ug			20	~	Ÿ	200	ug)	82	119	20
2952	Chromium	2.0	nĝ	0.92	U Q	20000323	-	; Y		ug	82	119	20	C	Ÿ	200	ug	85	120	20
637	Cobelt	1.0	ug	0.057	ug	20000323		. Y	200	υQ	85	120	20	c	Y	200	υg	90	110	20
643	Copper	2.0	กอิ	0 056	ug	20000323	,	; Y		ug	90	110	20	C	Ÿ		⊔g	75	125	20
3911	Dysprostum	5.0	ng	50	υg	19980609		Y		ug	75 75	125	20		Ÿ	200	ug	75	125	20
3912	Erbkim	5.0	ug	50	υg	19980609		Y		ug	75	125	20		-	200	ug 	75	125	20
3913	Europlum	5.0	υg	50	ug	19980609		Y		υg	75	125	20			200	u <u>g</u> ug	75	125	20
3914	Gadolinium	5.0	ug	5.0	ug	19980609		Y		ьg	75	125	20		Ÿ		пä	75	125	20
3915	Gallium	5.0	υg	5.0	ug	19980609		Y		υg	75	125	20			200	-	75	125	20
3916	Germanium	5.0	กนิ	50	ug	19980609		Y		ug		125	20		Ÿ		ug	75	125	20
1464	Gold	5.0	ug	5.0	пĝ	19980609		Y		ug	75 75	125	20		Ÿ		ug	75	125	20
3917	Halnium	5.0	ug	5.0	ug	19980609		Y		ug	75 75	125	20			200	vg	75	125	20
3918	Holmium	5.0	ug	5.0	ug	19980609		Y		ug			20		Y		ug	75	125	20
3921	kidium	5.0	ug	5.0	ug	19980609		Y		ug	75	125		_		1000	ug	74	116	20
1539	Iron	50	ug	17	ng	20000323	,	Y		ug	74	116	20	С			ug			
3922	Lanthenum	5.0	ug	5.0	ug	19980609		Υ		ug	75	125	20	_	Υ		บดู	75	125	20
1605	Lead	10	ug	0.066	υg	20000323	•	Y		nĝ	85	113	20	C	Y		υg	85	113	20
1616	Lithlum	5.0	ug	0.849	ug	20000323		Y		nā	81	119	23		Y		ug	81	119	23
3923	Lutelium	5.0	пĝ	5.0	ug	19980609		Y		ug	75	125	20	_	Y		пĝ	75	125	20
1618	mulesngeM .	5.0	ug	0,79	ug	20000323		Y	-	υg	63	109	20		Y	1000	ug	83	109	20
1659	Manganese	1.0	nĝ	0.087	ug	20000323	•	Y		nā	82	155	20	¢	Y	_	กอิ	82	122	20
1701	Mercury	0.2	ng	0.035	ug	20000323		Υ	5.0	ng	75	125	20	_	Y	5.0	пB	75	125	20
1906	Molybdenum	10	ug	0.60	υg	20000323	,	. Y		nā	75	125	20	U	Ä		ug . –	75	125	20
3490	Neodymium	5.0	uġ	5.0	пÕ	19980609		. Y		ug	75	125	20	_	Y		ug.	75	125	20
1956	Nickel	2.0	ug	0,098	ug	20000323	() Y		ug	90	110	20	C	Y	200	uğ	90	110	20
3924	Niobium	5.0	นฐ	5.0	ug	19980609		Υ		ug	75	125	20		Ä		пĝ	75	125	20
3925	Pallackum	5.0	ug	5.0	пĝ	19980609		Υ		υg	75	125	20	_	γ		ьg	75	125	20
2200	Phosphorus	50	ug	50	ug	19980609	•	Y		ng	77	119	20	C	Y	1000	ug	77	119	20
2209	Platinum	5 0	ពងិ	5.0	ug	19980609		. Y		ug	75	125	20	_	Υ		цg	75	125	20
2214	Potassium	50	ug	4.0	ug	20000323	(Y		na	86	107	20	Ç	Y	1000	υg	86	107	20
3926	Praseodymium	5.0	ug	5.0	ug	19980609		Y	200	ug	75	125	20			200	ug	75	125	20
3927	Rhenium	50	ug	5.0	пĝ	19980609		Υ	200	ug	75	125	20		γ	200	រាជិ	75	125	20

Page number 6

Protect of adversion of the Ar

Structured Analysis Code: S-DF-MH-3V-07

Target Analyse List: SAC: MET 6020 ICPMS Full List

Method: Extraction: METALS, TOTAL: Airtrains, Back Half Inductively Coupled Plasma Mass Spectrometry(6020)

CO Program: EMISSIONS, STATIONARY SOURCES

STL Sacrame/No

	Target List 20905		Detection	Limits					C	heck List	20950)				S	ılke List			
Syn	Compound	RL	Units	MDL	Units	Run Date	T	A	Amt	Unite	LCL	. UCL	RPD	T	A	Amt	Units		. UCL	. RPD
3928	Phodum	5.0	ug	5.0	ug	19 980 609		Y	200	սց	75	125	20		Y	200	ug	75	125	
3929	Aubidium	5.0	ug	5.0	ug	19980609		Y	200	ug	75	125	20		Υ	200	ug	75	125	20
3930	Ruthenium	5.0	ug	5.0	ug	19980609		Y	200	пā	75	125	50		Υ	200	ug	75	125	20
3931	Samarium	5.0	ug	5.0	ug	19980609		Y	200	υg	75	125	20		Υ	200	пĝ	75	125	
3932	Scandium	5.0	ug	5.0	ug	19980609		Y	200	ug	75	125	20		Y	200	uŋ	75	125	20
2281	Selenium	2.0	ug	1.7	ug	20000323	С	Y	200	ug	67	114	20	С	Y	200	ug	67	114	20
2285	Silver	1.0	ug	0.03	ug	20000323	С	γ	50	пĝ	85	108	20	С	Y	50	ug	85	108	20
2315	Sodium	50	ug	11	ug	20000323	C	Y	200	ug	81	123	35	С	γ	200	nĝ	81	123	35
2353	Stronlium	5.0	ug	0.28	ug	20000323		Y	200	пĝ	75	125	20		Y		ug	75	125	20
3933	Tantalum	50	ug	50	ug	19980609		Y	200	ug	75	125	20		Y		цĞ	75	125	20
3742	Tellurium	5.0	ug	5.0	սց	19980609		Υ	200	ug	75	125	20		Y	500	ug	75	125	20
3934	Terbium	5.0	ug	5.0	ug	19980609		Y	200	ug	75	125	20		Y	200	ug	75	125	20
2477	Thallium	1.0	υg	0.341	ug	20000323	¢	Y	50	ug	88	116	20	С	Υ	50	ug	88	116	
3935	Thorium	5.0	ug	5.0	ug	19980609		Y	200	ug	75	125	20		٧		лð	75	125	20
4189	Thulium	5.0	ug	5.0	пĝ	19980609		Υ	200	ug	75	125	20		Y	200	ug	75	125	20
2479	Tin	10	пg	1.42	ng	20000323	С	Y	200	пĝ	81	113	20	С	Υ	200	ug	81	113	
2482	Titanium	2.0	υg	0.43	ug	20000323	С	Υ	200	ug	85	105	20	С	Y	200	սց	85	105	20
2602	Tungsten	5.0	ug	5.0	ug	19980609		Y	200	ug	75	125	20		Υ		ug	75	125	20
3827	Uranium	50	ug	0.067	ug	20000323		Υ	200	ug	75	125	20	_	Y	200	រេដ្ឋា	75	125	20
2607	Vanadium	10	ug	3.112	ug	20000323	С	Y	200	лð	79	121	20	С		200	υg	79	121	20
3936	Ytterbium	5.0	пĜ	5.0	ug	19980609		Y	200	пā	75	125	20		Y	200	ug	75	125	20
2726	Yttrium	5.0	пð	5.0	пĜ	19980609		Υ	200	пg	75	125	20	_	Y		ug	75	125	20
2649	Zinc .	5.0	ug	1.0	ոց	20000323	С		200	ug	78	112	20	С		200	ug	78	112	
2651	Zirconium	5.0	ug	5.0	սց	19980609		Y	200	υg	86	119	20		Y	200	ug	96	119	20

Page number 7

Protestat appropriation of

Table 30. Method 7470a Cold Vapor Practical Quantitation Limits⁽¹⁾

Structured Analysis Code: S-EA-08-3V-07

Target Analyte List: All Analytes

Matrix. AIR

Extraction: Method:

MERCURY, EMPTY Airbains, Back Half Mercury (7470A, Cold Vapor) - Liquid **EMISSIONS, STATIONARY SOURCES**

QC Program: STL Sacramento Location:

	Analyte List		Detection	Limits				CI	heck List :	2098	2				Sp	ike List	20963		
Syn	Compound	RL	Units	MOL	Units	Run Date	TA	Amt	Units	LC	L UC	. RPD	T	A	Amt	Units	LCL	UCL	RPD
4846	Hg (Empty)	0.2	ug	0.049	ug	19980616	CY	1.0	սց	81	121	20	С	Υ	1.0	ug	81	121	20

(1) RL (Reportable Limit) is the PQL

Page number 6

Printed at 4/20/2013 to 20 30 pt 4

STL Reference Data Summary

		Matrix:	WATER
Structured Analysis Code:	I-3Q-MH-01-07	Extraction:	TCLP(1311) -> METALS, TOTAL RECOVERABLE
•			Inductively Coupled Plasma Mass Spectrometry(6020)
Target Analyte List:	SAC: MET 6020 TCLP/SPLP LIST		STANDARD TEST SET
		Location:	STL Sacramento

	Target List 20902		Detectio	n Limits					C	heck List	1 20954				S	Dike List	20955	 5	
Syn	Compound	RL	Units	MDL	Units	Run Date	T	A	Amt	Units	LCL UC	L RPD	Ŧ	A	Amt	Units	LCI	. UCL	RPD
140	Arsenic	0.020	mg/L	00050	mg/L	20000323	С	Υ	1.0	mg/L	75 12	5 20	С	Υ	1.0	ma/L	75	125	20
194	Barium	0.010	mg/L	0.00096	mg/L	20000323	С	Υ	1.0	mg/L	75 12	5 20			1.0	mg/L	75	125	
411	Cadmlum	0.010	mg/L	0.000071	mg/L	20000323	С	Υ	1.0	mg/L	75 12				10	mg/L	75	125	
2952	Chromium	0.020	mg/L	0.0009	mg/L	20000323	С	Υ	1.0	mg/L	75 125	5 20			1.0	ma/L	75	125	
1605	Lead	0.010	mg/L	0.00008	mg/L	20000323	С	Y	1.0	mg/L	75 12				1.0	mg/L	75	125	
2281	Salanium	0.020	mg/L	0.0017	ng/L	20000323	С	Υ	1.0	mg/L	75 12				1.0	mo/L	75	125	
2285	Silver	0.010	mg/L	0.00003	mg/L	20000323	С	Y	0.25	mg/L	75 125				0.25	mg/L	75	125	
																-			

NA

Page number (

STL Reference Data Summary

Structured Analysis Code: 1-0M-08-01-07

Target Analyte List: All Analytes

Matrix: WATER

n: TC

TCLP(1311) -> METALS, TOTAL (Method exclusive)

Method: Mercury (7470A, Cold Vapor) - Liquid

QC Program: STANDARD TEST SET Location: STL Secremento

	Analyte List		Detection	Limita				¢	heck List	20965	i			 Sp	ike List:	20987		
Syn	Compound	AL	Units	MOL	Units	Run Date	T A	Amt	Unite	LCL	UCL	RPD	T A	Amt	Units	LCL	UÇŁ	RPD
1701	Mercury	0.002	mg/L	0.002	mg/L	19980214	Y	0.005	mg/L	76	117	19	Υ	0 005	mg/L	76	117	19

Page number 1

Donal a trage to con-

Predoct at 1000114 to 50, 54

Matrix: AIR Extraction. EXTRACTION: Soxhlet and Sep Funnel Structured Analysis Code: S-DB-QL-7G-07 Method: Bese/Neutrals and Acids (8270C) Terget Analyte List: SAC: Trial Burn 8270 List QC Program. CLIENT: JACADS Location: STL Sacramento

	Target List 20821		Detection						CI	heck List						•	pika List:	20801	1	
Syn	Compound	RL	Units	MDL	Units	Run Date	τ	A	Amt	Units	FCI	L UCL	. APD	T	A	tmA	Units	LCL	L UCL	. RPD
3172	a,a-Dimethylphenethylamine	50	пВ	25	ug	19981028														
1	Acenaphthene	10	ug	5.0	ug	19881028	С	Υ	50	ug	67	107	20	C	Υ	50	ug	67	107	20
5	Acenaphthylene	10	ug	5.0	ηĝ	19981028		Y	50	ug	50	150	25		Y	50	ug	50	150	
24	Acetophenone	10	ug	5.0	ug	19981028											-			
30	2-Acetylaminofluorene	100	ug	50	ug	19981028														
93	4-Aminobiphenyl	50	ug	25	ug	19981028														
115	Anitine	10	ug	5.0	ug	19981028														
122	Anthracene	10	ug	5.0	ug	19981028		Y	50	ug	50	150	25	,	Y	50	ug	50	150	25
3204	Aramite	20	ug	10	ug	19981028											-			
339B	Benzaldehyde	10	ug.	5.0	ug	20000401														
3608	Benz(a)anthracene	10	ug	5.0	ug	19981028		Y	50	ug	50	150	25	,	Y	50	ug	50	150	25
4934	Dihydrosafrole	0	υg	0	ug	20000329											•		-	
2932	Benzenethiol	0	υg	o	ug	20000329														
199	Benzidine	100	ug	50	nð - 3	19981028														
205	Benzo(b)fluoranthene	10	ug	5.22	ng	19981028		Y	50	ug	50	150	25	,	Y :	50	υg	50	150	25
207	Benzo(j)fluoranthene	10	ug	5.0	ug	20000401											-			
208	Benzo(k)fluoranthene	10	пĝ	5.37	ug	19981028		Y	50	ug	50	150	25	١	Υ :	50	ug	50	150	25
209	Benzoic acid	100	ძვ	14.03	ug	19981028		Y	100	บฎ	50	150	25			100	ug	50	150	
210	Benzo(ghi)perylene	10	ug	2.43	ug	19981028		Y	50	บฐ	50	150	25	,	Y	50	ug	50	150	25
211	Benzo(a)pyrene	10	ug	5.0	ug	19981028		Y	50	ug	50	150			Y :		пB	50		25
213	Benzo(e)pyrene	10	ug	5.0	пå	19981028											-		,	
215	Benzyl alcohol	10	ug	1.66	ug	19981028		Y	10	nð	50	150	25	١	Y	10	υg	50	150	25
284	Biphanyl	10	ug	5.0	ug	20000401											_			
289	bis(2-Chloroethoxy)methane	10	ug	1.76	nĝ	19981028		Y	50	ug	50	150	25	١	Υ !	50	ug	50	150	25
293	bis(2-Chloroethyl) ether	10	пĝ	1.57	ug	19981028		Y	50	ug	50	150	25	١	Υ!	50	ug	50	150	
298	bis(2-Chlorolsopropyl) ether	10	пĝ	1.61	ug	19981028											-			
302	bis(2-Ethythexyl) phthalate	10	ug	1.84	ug	19981028		Y	50	ug	50	150	25	Y	Y :	50	ug	50	150	25
348	4-Bromophenyl phenyl ether	10	υg	1.73	ug	19981028		Y	50	ug	50	150	25	Υ	Y 5	50	ug		150	
4923	• • •	0	υğ	o	ug	20000329											•			
403	Butyl benzyl phthalate	10	υg	5.0	иg	19981028		γ	50	ug	50	150	25	Y	Y :	50	ug	50	150	25
4927	, , , , , , , , , , , , , , , , , , ,	0	ug	0	ug	20000329											-		-	
518	4-Chloroaniline	10	цg	5.0	ug	19981028		Y	50	ug	50	150	25	Υ	r 5	50	ug	50	150	25
2768		10	ug	5.0	ug	19981028											-		-	
578	4-Chioro-3-methylphenol	50	ug	10	пā	19981028	C	Y	100	ug	51	120	25	CY	/ 1	100	ug	51	120	25
587	1-Chloronaphthalene	10	ug	5.0	ug	20000329											-			
589	2-Chloronaphthalene	10	ug	5.0	ug	20000401		Y	50	ug	50	150	25	Υ	r 5	50	ug	50	150	25
600	2-Chlorophenol	10	ug	3.25	ug	19981028	С	Y	100	пĝ	45	106	42	CY	1		ug		106	
602	4-Chlorophenyl phenyl ether	10	ug	5.0	υg	19981028		Y	50	ug	50	150			/ 5		n8			25
633	Chrysene	10	ug	5.0	ug	19981028		Y	50	ug	50	150	25		5		nB -B		150	
777	4,4'-DDE	0	ug	0	ug	20000329								•	•		•		•	
824	Diallate	20	ug	10	μg	19981028														

Page number 2

Structured Analysis Code: S-DB-QL-7G-07

Target Analyte List: SAC: Trial Burn 8270 List

AIR Matrix:

Extraction: Method:

EXTRACTION: Soxhlet and Sep Funnel Base/Neutrals and Acids (8270C)

QC Program: CLIENT: JACADS STL Sacramento Location:

	Target List 20921		Detection	n Limits					CI	hack List	20800	•				Sp	ike List i	20801		
Syn	Compound	RL	Units	MDL.	Units	Run Date	T	A	Amt	Unita	LCI	. UCL	RPD	T	A	Amt	Units	LÇL	. UCL	RPC
859	Dibenz(a,j)acridine	20	ug	10	ug	19961028														
860	Dibenz(a,h)anthracene	10	ug	2.29	ug	19961028		Y	50	ug	50	150	25		Υ	50	ug	50	150	25
863	Dibenzoluran	10	ug	5.0	ug	19961028		Y	50	пB	50	150	25		Υ	50	ug	50	150	25
3260	1,2-Dibromo-3-chloropropane (DBCP)	0	ug	0	ug	20000329														
891	Di-n-butyl phthalate	10	ng	2.74	ug	19961028		Υ	50	ug	50	150	25		Υ	50	ug	50	150	25
904	1,2-Dichlorobenzene	10	ug	2.05	ug	19961028		Υ	50	ug	50	150	25		Υ	50	ug	50	150	25
907	1,3-Dichlorobenzene	10	ng	2.03	uŞ	19981028		Y	50	ug	50	150	25		Y	50	υg	50	150	25
910	1,4-Dichlorobenzene	10	ug	2.0	ug	19961028	¢	Y	50	აც	50	96	42	С	Y	50	ug	50	96	42
918	3,3*-Dichlorobenzidine	20	ug	5.0	ug	19961028														
971	2.4-Dichlorophenol	10	ug	2.98	ug	19981028		Y	100	υg	50	150	25		Y	100	иg	50	150	25
973	2,6-Dichlorophenol	10	ψg	5.0	ug	19981028														
1062	Diethyl phthalate	10	ug	5.0	υg	19981028		Υ	50	ug	50	150	25		Υ :	50	υg	50	150	25
4930	N,N'-Dilsopropylcarbodirmide	0	υģ	0	ug	20000329											-			
4266	Discoropylmethylphosphonate	0	ug	0	пĝ	20000329														
1110	p-Dimethylaminoazobenzene	20	цg	10	ug	19981028														
1120	7,12-Dimethylbenz(a)anthracene	20	ug	10	υg	19961026														
1124	3,3'-Dimethy/benzidine	50	ug	25	ug	19981028														
1145	2,4-Dimethylphenol	10	ug	5.0	ug	19981028		Y	100	ug	50	150	25		Y	100	ug	50	150	25
1149	Dimethyl phthalate	10	ug	5.0	ug	19981028		Y	50	ug	50	150	25		Υ :	50	ug	50	150	25
1164	1,3-Dinitrobenzene	10	ug	5.0	ug	19981028														
1167	4,6-Dinitro-2-methylphenol	50	ug	22.29	ug	19981028		Υ	100	ug	50	150	25		Υ	100	ug	50	150	25
1187	2,4-Dinitrophenol	50	ug	10	ug	19981028		٧	100	ug	50	150	25	•	Y	100	ug	50	150	25
1191	2,4-Dinitrotoluene	10	ug	5.0	ug	19981028	C	Y	50	បព្	67	116	19	C	Υ :	50	ug	67	116	19
1193	2,6-Dinftrotoluene	10	บฐ	1.01	սց	19981028		Y	50	ug	50	150	25	•	Υ :	50	п В	50	150	25
1196	2-sec-Butyt-4,6-dinitrophenol	20	ug	10	υg	20000401														
1162	Di-n-octyl phthalate	10	ыg	3.96	ug	19961028		Y	50	ug	50	150	25		Υ :	50	ug	50	150	25
1202	Dioxathion	0	ug	0	ug	20000329														
1212	Diphenylamine	10	ug	0	ug	20000329														
1214	1,2-Diphenythydrazine	10	υg	5.0	ug	20000401														
1362	Ethyl methanesuilonate	10	пâ	5.0	ug	19961028														
1414	Ruomittene	10	ug	1.45	ug	19981028		Υ		បង្វ	50	150	25	,	Υ :	50	ug	50	150	25
1417	Fluorene	10	ug	5.0	ug	19981028		Y	50	ug	50	150	25	,	Υ 5	50	ug	50	150	25
1470	Heptechlor	0	ug	0	ug	20000329														
1482	Hexachiorobenzene	10	пā	1.49	пē	19961028		Υ	50	υg	59	150	25	,	Υ 5	50	ug	50	150	25
1489	Hexachlorobutacliene	10	ug	2.40	υg	19981028		Y	50	ug	50	150	25	١	٧ 5	60	ug	50	150	25
1492	Hexachiorocyclopentacliene	50	ug	25	ug	19961028		Y	50	ug	50	150	25	1	Y 5	50	ug	50	150	25
1497	Hexachioroethane	10	ug	1.86	ug	19981028		Y	50	ug	50	150	25	,	Y 5	50	υg	50	150	25
1501	Hexachlorophene	0	ug	0	ug	20000329														
1511	Hexachloropropene	10	ug	5.0	ug	19981028														
1535	Indeno(1,2,3-cd)pyrene	10	ug	2.12	ug	19981028		Y	50	ug	50	150	25	١	/ 5	0	ug	50	150	25
1566	Isophorona	10	ug	1.33	υg	19981028		γ	50	ug	50	150	25	١	1 5	0	υg	50	150	25

Page number 3

Printed at the conduction as

Structured Analysis Code: S-DB-QL-7G-07

Target Analyte List SAC: Trial Burn 8270 List

Matrix: AIR

Extraction: EXTRACTION: Soxblet and Sep Funnel
Method: Base/Neutrals and Acids (8270C)

QC Program: CLIENT: JACADS Localion: STL Secremento

	Target List 20621		Detection	n Limits					С	heck Lis	t 20 8 0	0				S	pike List	2080	1	
Syn	Compound	RL	Units	MDL	Units	Run Date	T	A	Amt	Units	LC	r ncı	. RPD	T	A	Amt	Unite	LC	L UCI	. RPD
593	Isosafrole	20	ug	10	ug	19981028														
724	Methapyrilene	50	ug	25	ug	19981028														
741	Methoxychlor	0	ug	0	ug	20000329														
796	3-Methylcholanthrene	20	บฏ	10	ug	19981028														
799	Methylcyciohexane	0	ug	0	ug	20000329														
825	Methyl methanesultonate	tO	ug	5.0	ug	19981028														
829	2-Methylnaphthalene	10	ug	1.75	ug	19981028		Y	50	บวู	50	150	25		Y	50	ug	50	150	25
044	2-Methyl-5-nitroaniline	0	ug	0	ug	19981028														
851	2-Methylphenol	10	ug	6.24	пð	19981028		Y	100	иg	50	150	25		Υ	100	ug	50	150	25
1855	3-Methylphenol	50	ug	25	ug	19981028														
1857	4-Methylphenol	10	ug	6.95	ug	19981028		Y	100	ug	50	150	25		Υ	100	пĝ	50	150	25
1932	Naphthalene	10	บอ	1.65	ug	19981028		Υ	50	ug	50	150	25		Y	50	ug	50	150	25
940	1,4-Nephthoquinone	50	ug	25	ug	19981028														
1944	1-Naphthytamine	10	ug	5.0	ug	19981028														
1949	2-Naphthylamine	10	ug	5.0	ug	19961028														
3289	5-Nitroacenaphthene	0	ug	0	ug	20000329														
1960	2-Nitroanfine	50	บดู	1.56	ug	19981028		Y	100	ug	50	150	25		Υ	100	ug	50	150	25
1964	3-Nitroaniline	50	ug	5.0	սց	19981028		Y	100	ug	50	150	25		Y	100	ug	50	150	25
1968	4-Nitroaniline	50	ug	25	ug	19961028		Y	100	ug	50	150	25		Y	100	ug	50	150	25
1972	Nitrobenzene	10	ug	1.84	ug	19981028		Y	50	ug	50	150	25		Y	50	ug	50	150	25
1998	2-Nitrophenol	10	ug	3.43	ug	19981028		۲	100	ug	50	150	25			100	ug	50	150	25
200 i	4-Nitrophenol	50	ug	10	ug	19981028	С	Y	100	ug	10	132	155	С	Y	100	ug	10	132	155
2006	4-Nitroquinoline-1-oxide	100	ug	50	ug	19961028														
2009	N-Nitrosodi-n-butylamine	10	ug	5.0	ug	19961028														
2013	N-Nitrosodiethylamine	10	υg	5.0	иg	19981028														
2018	N-Nitrosockmethylamine	10	ug	5.0	ug	19981028		Y		пÐ	20	130	20			50	ug	50	130	20
2028		10	บดู	1.68	nà	19981028	_	Y	50	ug	50	150	25			50	ug	50	150	25
2024		10	nĝ	1.19	ug	19981028	С	Υ	50	ug	56	107	32	С	Y	50	υg	56	107	32
2031	N-Nitrosomethylethylamine	10	ug	5.0	ug	19981028														
2034	N-Nitrosomorpholine	10	nā	5.0	ug	19981028														
2036	N-Nitrosopiperidine	10	ng	5.0	ug	19981028														
2038	N-Nitrosopyrrolidine	10	ug	5.0	nð	19981028														
2046	5-Nitro-o-tokridine	0	nā	0	ug	19961026														
2074	Ethyl parathion	0	ug	0	пß	19981028														
2104	Pentachlorobenzene	10	ug	5.0	ug	19981028														
2108	Pentachioroethane	50	υg	25	ug	19 98 1028														
2112	Pentachioronitrobenzene	50	ug	25	ug	19981028														
2118	Pentachlorophenol	50	пĝ	18.85	ьg	19981028	C	Y	100	ug	10	138	200	С	Υ	100	ug	10	138	200
2146	Phenacetin	20	υg	10	ug	19981028														
2154	Phenanthrene	10	บg	5.0	ug	19981028			50	ug	50	150	25		Y	50	ug	50	150	25
2155	Phenol	50	ug	10	uΩ	19981028	C	Υ	100	ug	10	129	46	C	Υ	100	ug	10	129	46

Page number 4

Printed statement of or

made to the second

Mairix: AIR
Extraction: Extraction: Extraction: Base/Neutrals and Acids (8270C)

Target Analyte List: SAC: Trial Burn 8270 List OC Program: Location: STL Sacramento

	Target List 20021		Detection	n Limits					CH	reck List	20000	•				Sį	oiko List	20801		
Syn	Compound	RL.	Units	MDL	etinU	Run Date	Т.	A	Amt	Units	LCL	. UCL	, RPD	T	A	Amt	Units	rcı	. UCI	. RPC
3269	1,4-Phenylenediamine	100	ug	50	ug	19981028														
2206	2-Picolme	20	ug	10	ug	19981028														
2221	Pronamide	20	ug	10	បង្វ	19961028														
2252	Pyrene	10	υg	2 31	ug	19981028	C	Y	50	ប្ប	71	147	34	C	Y	50	пĝ	71	147	34
2256	•	20	ug	10	ug	19981028														
3477	Quinoline	٥	ug	0	ug	20010514														
2275	Sairote	20	ug	10	ug	19981028														
2430	1.2.4.5-Tetrachlorobenzene	10	ug	5.0	ug	19961028														
2457	2,3,4,6-Tetrachlorophenol	50	υg	25	υg	19981028														
1786		10	ug	50	ug	20000329														
1794	p-Toluidine	0	ug	0	υġ	20000329														
2515	•	10	UG	2.14	ug	19981028	C	٧	50	υg	54	102	33	С	Y	50	ug	54	102	33
2555	• • • • • • • • • • • • • • • • • • • •	10	υg	5.0	ug	19981028		٧	100	ug	50	150	25		Y	100	ug	50	150	25
2559	•	50	υg	10	ug	19981028		Y	100	ug	50	150	25		Y	100	υg	50	150	25
2597	1,3,5-Trinitrobenzene	50	ug	25	ug	19981028														
1425			-		•		X.	Υ	50	пã	46	119	0	X	Y	50	ug	46	119	0
1426	• •						X.	Υ	100	ug	23	114	0	Х	Y	100	ug	23	114	0
2512	- · •						X.	Y	100	ug	34	143	0	х	Y	100	ug	34	143	0
2736							X	Y	50	ug	37	115	0	X	Y	50	ug	37	115	O
2737	Phenoi-d5						Х.	Υ	100	ug	11	129	0	х	Y	100	ug	11	129	0
2738							X '	Y	50	ug	49	136	0	×	Y	50	ug	49	136	0
2854	· · · · · · · · · · · · · · · · · · ·						X	γ	100	ug	20	130	0	X	Y	100	ug	20	130	0
2855							X ·	Υ	50	ug	16	118	0	X	Y	50	ug	16	118	0
4191							X ·	Υ	100	ug	40	150	0	X	Y	100	ոն	40	150	0
4197	* ** *						X '	Υ	100	nβ	40	150	0	X	٧	100	ug	40	150	0

Paga number 5

-82

Digitals in Construction in the Co

			
		Matrix:	WATER
Structured Analysis Code:	I-62-QL-01-07	Extraction:	TCLP(1311) -> LIQ/LIQ, SEP FUNNEL - Acid-> Base
•		Method:	Base/Neutrals and Acids (8270C)
Target Analyte List:	SAC: 8270C TCLP LIST	QC Program:	STANDARD TEST SET
		Location:	STL Sacramento

	Target List 20803		Detection	n Limits					C	heck List	20808	3				S	pike List:	2080	9	
Syn	Compound	RL	Units	MDL	Unita	Run Date	T	A	Amt	Units	LCL	UCL	RPD	Ŧ	A	Amt	Units	LC	L UÇI	L RPD
910	1,4-Dichlorobenzene	50	ug/L	3.75	ug/L	19980901	Ç	Y	500	ug/L	50	150	50	С	Y	500	ug/L	50	150	50
1191	2,4-Dinitrotoluene	50	ug/L	25	ug/L	19980901	С	Υ	500	ug/L	50	150	50	С	Υ	500	ug/L	50	150	50
1482	Hexachlorobenzene	50	ug/L	5.0	ug/L	19980901	C	Υ	500	ug/L	50	150	50	С	Y	500	ug/L	50	150	50
1489	Hexachlorobutadiene	50	ug/L	25	ug/L	19980901	С	Υ	500	ug/L	50	150	50	С	Υ	500	ug/L	50		50
1497	Hexachloroethane	50	ug/L	25	ug/L	19980901	C	Υ	500	ug/L	50	150	50	С	Y	500	ug/L	50		50
1851	2-Methylphenol	50	ս ց∕ Ն	9.0	ug/L	19980901	С	Υ	500	ug/L	50	150	50	С	Υ	500	ug/L	50	150	_
2777	3-Methylphenol & 4-Methylphenol	50	ս ց/Լ .	7.5	ug/L	19980901	С	Υ	500	ug/L	50	150	50	С	Y	500	ug/L	50		50
1972	Nitrobenzene	50	ug/L	5.5	ug/L	19980901	C	Υ	500	ug/L	50	150	50	С	Υ	500	ug/L	50		50
2118	Pentachlorophenol	250	ug/L	90	ug/L	19980901	С	Υ	500	ug/L	50	150	50	С	Υ	500	ug/L	50		50
2256	Pyridine	100	ug/L	50	ug/L	19980901	С	Y	500	ug/L	50	150	50	Ç	Y	500	ug/L	50		50
2555	2,4,5-Trichlorophenol	50	ug/L	8.5	ug/L	19980901	С	Υ	500	ug/L	50	150	50	С	Y	500	ug/L	50	150	50
2559	2,4,6-Trichlorophenol	50	ug/L	9.0	ug/L	19980901	C	γ	500	ug/L	50	150	50	С	γ	500	ug/L	50	150	50
1425	2-Fluorobiphenyl						х	Υ	500	ug/L	33	111	0	x	Υ	500	ug/L	33	111	
1426	2-Fluorophenol						Х	Y	500	ug/L	10	74	0	х	Υ	500	ug/L	10	74	0
2512	2,4,6-Tribromophenol						Х	γ	500	ug/L	18	140	0	х	Υ	500	ug/L	18	140	0
2736	Nitrobenzene-d5						Х	Y	500	ug/L	34	103	0	х	Υ	500	ug/L	34	103	0
2737	Phenol-d5						X	Υ	500	ug/L	10	54	0	x	Y	500	ug/L	10	54	0
2738	Terphenyl-d14						X	Υ	500	ug/L	30	134	0	X	Y	500	ua/L	30	134	ò

(1) RL (Reportable Limit) is the PQL

Page number 2

Table 35. Method 9057 Practical Quantitation Limits⁽¹⁾

Test Plan 05-74 5 February 2004

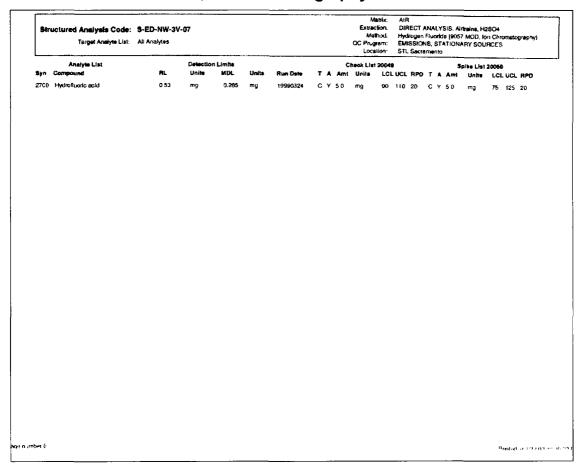
Structured Analysis Code: S-ED-M8-3V-07

Target Ar.alyte List: All Analytes

Matrix: AIR

Extraction: DIRECT ANALYSIS: Airtrains, H2SO4 Method:

Hydrogen Chloride Emissions (9057) QC Program: EMISSIONS, STATIONARY SOURCES


Location: STL Sacramento

Analyte List Check List 20049 Spike List 20050 RL MDL T A Amt Units LCL UCL RPD T A Amt Units LCL UCL RPD Syn Compound Units Run Date 90 110 10 C Y 5.0 2705 Hydrochloric acid 0.51 0.257 19990324 75 125 20

Раде положе 7

Prestor and appropriate of the

Table 36. Method 9057 Mod, Ion Chromatography Practical Quantitation Limit⁽¹⁾

(1) RL (Reportable Limit) is the PQL

1

Table 37. Method 9057 Ion Cromatography Practical Quantitation Limit⁽¹⁾

Sti	uctured Analysis Code: Target Analyle List								Extra Me QC Prop	ihoa:	CNC EMI	ECT A	miasic IS, ST	ATION	rirains, N 57 Ion Ch ARY SOL	vornato	graph	y)
_	Analyte List		Detectio						heck Lie						pike List	20050	1	
	Compound	RL	Unite	MDL	Units	Run Date	т /	Amt	Units	LCL	UÇL	APD	T A	Amt	Units	LCL	DCT.	RPD
515	Chlorine	10	mg	0.25	mg	19990324	CY	f 5.0	mg	90	110	10	CY	50	ing	75	125	20
11 201 9																		a amagn

Method 0023A/8290 Target Detection Limits

	pg/sample
2,3,7,8-TCDD	10
Total TCDD	10
1,2,3,7,8-PeCDD	50
Total PeCDD	50
1,2,3,4,7,8-HxCDD	50
1,2,3,6,7,8-HxCDD	50
1,2,3,7,8,9-HxCDD	50
Total HxCDD	50
1,2,3,4,6,7,8-HpCDD	50
Total HpCDD	50
OCDD	100
2,3,7,8-TCDF	10
Total TCDF	10
1,2,3,7,8-PeCDF	50
2.3,4,7,8-PeCDF	50
Total PeCDF	50
1.2,3,4,7,8-HxCDF	50
1.2,3,6,7,8-HxCDF	50
2,3,4,6,7,8-HxCDF	50
1.2,3,7,8,9-HxCDF	50
Total HxCDF	50
1,2,3,4,6,7,8-HpCDF	50
1,2,3,4,7,8,9-HpCDF	50
Total HpCDF	50
OCDF	100

DLs based on 2 way split of extract using one-half for analysis and one-half for archive.

2 3

-

1

Apr-22-2003 03:21pm From-STL KNOXVILLE 8655844315 T-973 P 002/004 F-545 SIL Detection Limit Summary Target Analyte List: Q: TCLP MSVOA Standard List Method. Volatile Organics, GC/MS (82808) Extraction: TCLP(1311-ZHE/filter) -> PURGE-ANO-TRAP (Low Lavel) QC Program. STANDARD TEST SET Location STL Knorville Analyte List **Detection Limits** Constituent RL Units MDL Units Benzene 0.050 mg/L 0.005 mg/L Methyl ethyl ketone 0.20 mg/L 0.020 mg/L Carbon tetrachloride 0.050 mg/L 0.005 mg/L Chlorobenzene 0.050 mg/L 0.005 mg/L Chioroform 0.050 0.005 mg/L mg/L 1,2-Dichloroethane 0.050 0.005 mg/L 1,1-Dichloroethylene 0.050 mg/L 0.006 mg/L Tetrachioroethylene 0.050 mg/L 0.008 mg/L Trichioroethylene 0.050 0.005 mg/L mg/L Vinyl chloride 0.009 mg/L 0.10 mg/L Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8 Dibromofluoromethane Page number 1

(1) RL (Reportable Limit) is the PQL

APR 22 '03 12:16

Printed at 4/22/03 3.08 09 PM

PAGE.02

8655844315

Table 40. Method TCO Practical Quantitation Limits⁽¹⁾

2

Apr-22-2003 03:21pm From-STL KNOXVILLE 8655844315 T-973 P D03/004 F-545 OIL Detection Limit Summary Target Analyte List: All Analytes Matrix: QC Program: Location: Method: Total Chromatographable Organics (TCO) Analysis Extraction: SOXHLET (NOMINAL), Antrains: Combined STANDARD TEST SET STL Knoxville **Analyte List Detection Limits** Constituent RL Units MDL Units Total Chromatographable Organics 0.150 mg 0.017 mg n-Eicosane n-Heptadecane Page number 1 Printed at 4/22/03 3:08:57 PM APR 22 '03 12:16 8655844315 PAGE.03

(1) RL (Reportable Limit) is the PQL

Table 41. Method Grav Practical Quantitation Limit⁽¹⁾

2

8655844315 T-973 P 004/004 F-545 Apr-22-2003 03:21pm From-STL KNOXVILLE OIL Detection Limit Summary Target Analyte List: All Analytes Method: Gravimetric Analysis (GRAV) Extraction: SOXHLET (NOMNAL), Airtrains: Combined QC Program: STANDARD TEST SET Location: STL Knoxville **Analyte List Detection Limits** Constituent RL Units MDL Units Total Gravimetric Organics 1.5 mg 0.68 mg Page number 1 Printed at 4/22/03 3 09 40 PM APR 22 '03 12:16 8655844315 PAGE. D4

(1) RL (Reportable Limit) is the PQL